ETS| TS 102 351 V2.1.1 (2005-08)

Technical Specification

Methods for Testing and Specification (MTS);
Internet Protocol Testing (IPT);
IPv6 Testing: Methodology and Framework

D

2 ETSI TS 102 351 V2.1.1 (2005-08)

Reference
RTS/MTS-IPT-001-1PV6-Fwk

Keywords
IP, interoperability, methodology, testing, TTCN

ETSI

650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +334 9294 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C
Association a but non lucratif enregistrée a la
Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

Individual copies of the present document can be downloaded from:
http://www.etsi.org

The present document may be made available in more than one electronic version or in print. In any case of existing or
perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF).
In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive
within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status.
Information on the current status of this and other ETSI documents is available at
http://portal.etsi.org/tb/status/status.asp

If you find errors in the present document, please send your comment to one of the following services:
http://portal.etsi.org/chaircor/ETSI_support.asp

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 2005.
All rights reserved.

DECT™, PLUGTESTS ™ and UMTS™ are Trade Marks of ETSI registered for the benefit of its Members.

TIPHON™ and the TIPHON logo are Trade Marks currently being registered by ETSI for the benefit of its Members.
3GPP™is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners.

ETSI

http://www.etsi.org/
http://portal.etsi.org/tb/status/status.asp
http://portal.etsi.org/chaircor/ETSI_support.asp

3 ETSI TS 102 351 V2.1.1 (2005-08)

Contents

Intellectual Property RIGNES.........oo et 5
0 Yo (o SRS 5
1 o010 SRS 6
2 REFEIBINCES ...ttt sttt e et et et e e e bt e bt e bt s b e se e be st e st e st e benbenbeneenbentenees 6
3 Definitions and aDbrEVIBLIONS.........c.viieie ettt e e e tesreeeesneeneeseesneeneeseeenes 7
31 D= T aT] (0] PO P TP PR UPTPRUSUSII 7
3.2 ADDIEVIBLIONS ...ttt et b b h ekt e e e e se e e bt e bt eh e eh e et e e e bt e b e e Rt e Re e e e e e besheebenneeneennen 7
4 THE TTCN-3 FraMEWOTK......ceiieieiieiieiesie sttt st b ettt be st st esbe e e e e 8
5 The IPV6 test develOPMENT PrOCESS..........ccciiiiiiiiiiii s 8
51 Conformance testing MEtNOAOIOGYc.ccueiterieire ettt ettt b et sb e e 10
52 Interoperability testing MEtNOAOIOGYccceiiiieirieiere e 10
6 The ReqUIremMENtS Calal OQUEc.eiuieierieeiesieseeesie st e e ste e e te et e stesae e tesreeeesseeeeseesneestesseensessesneensessens 10
6.1 Entriesin the ReqQUIremMents CalalOQUEccvcuiieirieeiieie e see st te e st e e s e ne e te e seesse e eeeeeeneesnns 10
6.2 NaMING [PVE FEOUINEIMENTS.ecueeteeieeiesieseesteesteesteeaeseesseesteete e teessesseesseesseesseasseanseassesseesseessenssennsesnsennensnns 11
7 Devel0ping teSt SPECITICALIONS.......c.ciiiieirieri ettt bt 12
7.1 Conformance test SPECITICALTIONS.ciieuiireieere ettt s e ettt nb e e 12
711 TESE CONFIGUIBLIONScveveeeteee ettt bbbt b st bbbttt b et b et nb e e e 12
7111 Naming IPv6 conformance test CONfiQUIAioNS.............coueerierieirieniee ettt eenea 12
7.1.1.2 Naming [PV6 tESE COMPONENTS........ciieiieiee e it st ete e eee e et e e e e ete s aesaesreesreesaeeseeneeeseesseesseesseeseens 12
7.1.2 Test Suite Structure and TESE PUIMPOSES........coiieieiie e cee sttt eete s e e e teete e e e saeesseennesneeeneesraesseesnens 13
7121 TESE SUITE SETUCTU ...ttt bbbt e e bt b e ae bt se st e e e e e besheebeeneeneeneennas 13
71211 N E= g Lo T VLG (== 01U 13
7.1.22 LIS A 1 010 3PP RPR 13
71221 NAMING TPVE TPS ...ttt ettt b et b e st e s s e b et eneebenteneenis 13
71222 USING thE TP LANQUAOEeeeueetereeieetese ettt sttt nb et nb et ens 14
713 Test Suite devel OPMENE IN TTCON-3t b e b e e e e 15
7131 Storage Of TTCN-3 ElEIMENESc.ooiiiiie bbb nn s 15
7.132 IS SRR 16
71321 INBIMING TCS ..ttt b et b et b et b e b e b e e eb b e b e b e bt e eb e e bt s e st b et ese b e b e e nns 17
7.1.33 QL= o= = g Tox o] PSS 17
7.1.33.1 =0 oo T IO 10T 1 o gL 18
7134 TP FUNCLIONS ...ttt e bbbt ae e e se e b e s et eb e s bt eh e e e e e e besbeebeeneeneeneentes 18
7.1.34.1 INE= g g To o I 0 ot o 19
7.1.35 Preambles and POSTAIMDIES ..ottt s sb e e nee 19
7.1.35.1 Naming of Preambles and POStAMbIESccoiiieiiricece e 19
7.1.3.6 TESE CASE SEIECTION.....eei ettt bbbttt b e bt h e bttt e e e b sh e bt aeene e nnes 19
7.1.3.7 TeSt SUILE PArAMELENTZELION.c.eeieeeeireeeetert ettt bbbt b bbb et b e e 20
7.2 Interoperability teSt SPECITICALTIONS.eeiuiieeeetere ettt 20
721 TESE CONFIGUIBLIONS ...tttk b ekt b et b et b et b e et b et nb e e e 20
7211 Naming IPv6 interoperability test CONfiQUIatioNScoveeriiieereiene et 20
7212 Naming 1PV tESE COMPONENES.........couiriiirtirieiete ettt se et sttt se et et et se e ebesee e ebesae e ebesbeneenens 21
7.2.2 Test Suite Structure and TESE PUIMPOSES........eoiieieeie e cee st et et e e te e e e saeesteenaesneeenaeesaessaesnees 21
7221 TESE SUITE SETUCTU ...ttt bbbt b e bbbt se st e e e e et saeeb e e neene e e ennas 21
72211 NaMING [PVE LESE GrOUPS ... uveeeieciiesieesee st et ete et e et e st e e e teetesteseesseesse e seenseensesseesseenteenseensesneesans 21
7.2.2.2 LIS A 1 010 =3P RPR 21
72221 NAMING TPVB TPS ...ttt sttt b et s et e s e s et et e s e besteneenis 21
72222 USING thE TP LANQUAGEveeeveeeieeiiesiee st st este et e et e s e e e e e sstesseesseesseesaeenseensesssassansseensennsennsesnensnns 22
7.3 Test DesCription deVEIOPIMENT ..ottt et b e et b e e bt b e se e eb e b neebe s b neenea 23
731 NaMING TESE DESCIIPLIONS ...ttt sttt sttt et bt b e s e et b e et b e e st b e se et ebe b et ebe s 23
7.3.2 =S = 1= o 0 I 1 OSSPSR 23

ETSI

4 ETSI TS 102 351 V2.1.1 (2005-08)

8 The TTCN-3 ATS RePOSItory and Librarycccoeeiiiiciiiice ettt s 24
8.1 TTCN-3 Library StrUCIUIE OVEIVIEW.eiiieeieeieeeeteseeseesteesteetesseesseesseeseestesssesseesseesseesssanseenseesssssesssenssnes 24
8.1.1 Datatypes and ValUES MOUUIES..........ccuiiieiieieeie e siesee s e ste e tesae s ae e saeesteenaeestessaessaeste e seeteenteeneesneesnes 25
812 TEMPIAIES MOQUIES ...ttt bbbt b et b et b e et 25
8.1.3 Modules Of TTCN-=B fUNCHIONS.......ccueiiieieee ettt et e et e et e e e e sbe e beebeenneenneenns 25
8.131 Verdict CONIOl MOAUIES..........eeieeieeeee ettt sttt re e ae e e e te e sbeesbeesbe e beenbeennesnneaans 25
8.1.3.2 SyNChroNIiZatioN MOAUIE..........coueiieiie ettt e et se et e eeseeseesbesneereeneeneeneans 26
8.1.33 IPV6 DENAVIOUN MOUIES........ceeiiee ettt ettt e et et e st e e be e beeresneesanesaeesseenseenreans 27
8.14 Adding modulesto the TTCN-3 LiBrary ... e e 27
8.1.5 ATS REPOSITOrY SLIUCLUNE OVEIVIEW.....ecveeeieeeieeieesieesieesteesteeaeassesseasseeseestesssesseesseesseesseensesssssnsesssessenssenssens 27
9 TTCN-3 NAMING CONVENLIONS.ccuieiiitiiiesieeteeeesteeeesteseessesseesesresseestesreeseessesssessesseesessesseesesseessessenns 28
10 TTCN-3 COMMEINE TAOS. . eeteeirerieriiereiteesteesteeseeseestesteesteesseesseesseesseeaseeeseesteesaeesseessessnsesnseenseessesssessnnnan 29
11 Interaction between the test system and the SUToeerieeici e 31
111 The Simple Control and Observation ProtoCol (SCOP)ccecieiieiieie e seesiesse e s sae e e e sseeseees 31
11.1.1 @0l olc =S (= g A= o (U 1S) S 32
11.2 The Upper TESIEr ClIENt (UTC) ..o etestees et e e ee e st e steeteetesse e st e s ta e te e e eneesseesaeesaeenseenseenseenaensenssnns 32
Annex A (nor mative): A formal notation for expressing test PUrPOSEScovververeererereeneeieeeenes 34
y AN R g oo 8 ot (o) (o T I 1 PSR 34
y A I Y o 1= o (= SR 35
F N B €1 (0 8 o] oo TSP T PSSR PP 35
R I o 1= o = OSSR 36
y T I = oo o V2SS 36
A5.1 THEWITR SIAIEMENTottt et e et e e abeeaeesbeesbeesbeebesaeesaeesaeanbeenteenseeseestnesrnas 37
A5.2 THEWREN STALEMIENTcveiie ettt e te st st esbe e s be et e eaeeebeeebe e beesbeeasesaeesbeesbeenseansesnseeseeeseestnessnns 37
A53 THETREN SAEMENTottt et e et e et e eaeesbeesbeesbeeasesasesaeesaeanbeenteensesneesreessnas 37
A5.4 Other BENAVIOUral SLALEMENLSc.eiiuiecieececce ettt ettt et e st e et e et e et e saeesaeesaeesreenseenresaseeseesteebeentens 38
A6 TRETPLAN GRaIMME......ccciiiieitieciieieesee et ce e teeseesteesaeeste s be e teesbeestessaeeessesaseeseesseesaessaseensennsesssessnnens 38
Annex B (informative): TTCN-31ibrary Modules.........ccccoiiiiirireeeees s 41
B.1 Electronic annex, zip file With TTCN-3 COUEceeoieiiiieireeere e 41
Annex C (nor mative): SCOP type definitions and eNCOAINGS........ccovvererererereeieeeeee e 42
C.1 TheProtocol TYPE DEfINITION.......cciiiiee ettt st st re e e e s resneetesreeaeenrenren 42
C.2 ENCOUING Of SCOP ..ottt sttt s e st et e e te s tesae e besbeeseestesaeensesreentesteeneensenrean 43
Annex D (informative): ThelPv6 requirements database.cccceveveeieveciiese e 46
[TS 0] YRS 50

ETSI

5 ETSI TS 102 351 V2.1.1 (2005-08)

Intellectual Property Rights

IPRs essential or potentially essential to the present document may have been declared to ETSI. The information
pertaining to these essential IPRs, if any, is publicly available for ETSI member s and non-member s, and can be found
in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETS in
respect of ETS standards’, which is available from the ETS| Secretariat. Latest updates are available on the ETSI Web
server (http://webapp.etsi.org/| PR/home.asp).

Pursuant to the ETSI IPR Palicy, no investigation, including I PR searches, has been carried out by ETSI. No guarantee
can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web
server) which are, or may be, or may become, essential to the present document.

Foreword

This Technical Specification (TS) has been produced by ETSI Technical Committee Methods for Testing and
Specification (MTS).

ETSI

http://webapp.etsi.org/IPR/home.asp

6 ETSI TS 102 351 V2.1.1 (2005-08)

1 Scope

The present document gives guidelines for the use of a common method for developing test specifications for IPv6. This
method is applicable to all IPv6 categories including the core specification, mobility, security and transitioning to IPv6
from IPv4.

The underlying method is based on the methodol ogies specified in 1SO/IEC 9646-1 [4] for conformance tests and
TS 102 237-1 [1] for interoperability tests. It provides guidance on the development and use of the following key
elements of the method:

- aReguirements Catalogue (RC);
- aTest Suite Structure (TSS) and Test Purposes (TP);
- Test Descriptions (TD) - interoperability;
- aTTCN-3library of datatypes and values, templates and functions;
- anAbstract Test Suite (ATS) - conformance.
The methodology also offers guidance on naming conventions and other style-related issues.

Although the present document has been developed primarily for use in the testing of 1Pv6 standards, it could equally
be used in other areas of protocol test specification.

2 References

The following documents contain provisions which, through reference in thistext, constitute provisions of the present
document.

. References are either specific (identified by date of publication and/or edition number or version number) or
non-specific.

. For a specific reference, subsequent revisions do not apply.
. For anon-specific reference, the latest version applies.

Referenced documents which are not found to be publicly available in the expected location might be found at
http://docbox.etsi.org/Reference.

[1] ETSI TS102 237-1 (V4.1.1): "Telecommunications and Internet Protocol Harmonization Over
Networks (TIPHON) Release 4; Interoperability test methods and approaches; Part 1. Generic
approach to interoperability testing”.

[2] ETSI EG 202 106 (V2.1.1): "Methods for Testing and Specification (MTS); Guidelines for the use
of formal SDL as a descriptive tool".

[3] ETSI ES201 873-6 (V3.1.1): "Methods for Testing and Specification (MTS); The Testing and
Test Control Notation version 3; Part 6: TTCN-3 Control Interface (TCI)".

[4] ISO/IEC 9646-1 (1992): "Information Technology - Open Systems I nterconnection - Conformance
Testing Methodology and Framework - Part 1. General concepts'.

[5] IETF RFC 1035 (1997): "Domain hames - implementation and specification”.

ETSI

http://docbox.etsi.org/Reference

7 ETSI TS 102 351 V2.1.1 (2005-08)

3 Definitions and abbreviations

3.1 Definitions

For the purposes of the present document, the following terms and definitions apply:

behavioural function: TTCN-3 function which specifies actions which result in the sending of messages to one or
more observed interface

computational function: TTCN-3 function which specifies actions which modifies data values but does not result in
the sending of messages to one or more observed interface

Equipment Under Test (EUT): grouping of one or more devices which has not been previously shown to interoperate
with previously Qualified Equipment (QE) TS 102 237-1 [1]

Qualified Equipment (QE): grouping of one or more devices that has been shown, by rigorous and well-defined
testing, to interoperate with other equipment TS 102 237-1[1]

NOTE: Oncean EUT has been successfully tested against a QE, it may be considered to be a QE, itself.

3.2 Abbreviations

For the purposes of the present document, the following abbreviations apply:

3GPP 3'd Generation mobile Partnership Project
API Application Programming Interface

ATS Abstract Test Suite

EUT Equipment Under Test

IETF Internet Engineering Task Force

IFS I nteroperable Functions Statement

IPv4 Internet Protocol version 4

IPv6 Internet Protocol version 6

IuT Implementation Under Test

MTC Main Test Component

NGN Next Generation Network

PICS Protocol |mplementation Conformance Statement
PTC Parallel Test Component

QE Qualified Equipment

RC Requirements Catalogue

RFC Request For Comments (IETF terminology for a draft standard)
RQ Requirement

SCOP Simple Control and Observation Protocol
SUT System Under Test

TISPAN ETSI technical body with responsibility for NGN standardization
TC Test Case

TCl TTCN-3 Control Interface

TD Test Description

TE Test Equipment

TP Test Purpose

TSS Test Suite Structure

TTCN-3 Testing and Test Control Notation edition 3
UDP User Datagram Protocol

uT Upper Tester

uUTC Upper Tester Client

uTS Upper Tester Server

ETSI

8 ETSI TS 102 351 V2.1.1 (2005-08)

4 The TTCN-3 Framework

ETSI test specifications are usually developed for a single base protocol standard or for a coherent set of standards. As
such, it is possible to follow the methodology specified for conformance test development in ISO/IEC 9646-1 [4]
without much difficulty. However, the requirements of |Pv6 are distributed across a wide range of documents and an
adaptation of the |SO/IEC 9646 approach to test development is necessary. Also, for readability, consistency and to
ease reusability of TTCN-3 code it is necessary to apply some guidelines on the use of TTCN-3.

It isthis approach that isreferred to as the "TTCN-3 Framework™.

Asits name implies, the framework is oriented towards the production of Abstract Test Suites (ATS) in the Testing and
Test Control Notation edition 3 (TTCN-3). The TTCN-3 Framework comprises:

. adocumentation structure:
- catalogue of requirements,
- Test Suite Structure (TSS);
- Test Purposes (TP):
" conformance;
" interoperability;
. Abstract Test Suite (ATS):
- Test Cases (TC) in TTCN-3 for conformance tests;
- Test Descriptions (TD) in tabulated English for interoperability tests;
. library of TTCN-3 building blocks:
- data types and val ues;
- templates;
- general computational functions;
- TP functions (see clause 7.1.3.3);
. a methodology linking the individual documentation, library and ATS elements together:
- style guidelines and examples;
- naming conventions,
- guidelines on the use and extension of the TTCN-3 library;
- astructured notation for TPs.

The TTCN-3 Framework, particularly the methodology, draws heavily on the tried and tested | SO/IEC 9646-1 [4] but
modifiesit to suit the particular case of IPv6 testing. It also incorporates guidelines on interoperability testing taken
from TS 102 237-1 [1].

5 The IPv6 test development process

The process to be followed when developing 1Pv6 test specificationsis shown in figure 1.

ETSI

3G Mobile
Specifications
Industry
Practice
IPv6 Forum &
other sources
Conformance

1 Requirement

Write Test

ETSI TS 102 351 V2.1.1 (2005-08)

DEC

RFC

1 Requirement

1 or more TPs

1 or more TPs

Requirements

Purposes

TP_COR_nnnn_mm

1TP
TSS & TP =

Write TP
Functions

=

1 Test Case

A

Write Test
Cases

1 or more TCs

=
1ATS

A 4

1 TP Function Group

1 TP Function Group

C_COR_nnnn_mm

Catalogue

Interoperability

Write Test

TTCN-3
Library

IPv6 Test Suitef o
Repository

Test Casei

nteroperabili
Test
Descriptions

N ——
A Test Casei‘“

Purposes

TP_COR_nnnn_mm
1TP
=

1 TP Function Group

| Test Description

1 Test Case

TD_COR_nnnn_mm

Write Test
~__ Cases

1 or more TCs

=
1ATS

Consm‘
ATS -

Conformance
Conformance

Conformance [
Test Suite

Interoperability i
Test Suite

Figure 1: IPv6 test development process

ETSI

Interoperability
Interoperability -

./ Construct
o ATS

10 ETSI TS 102 351 V2.1.1 (2005-08)

The process begins with the analysis of the IETF RFCs related to IPv6 and a range of secondary inputs which include:
. current industry practice;

. existing test documentation from the |Pv6 Forum and other established sources;

. specifications related to the use of IPv6in 3"d Generation mobile networks.

Theresult of this analysisis the identification and classification of afull range of 1Pv6 requirements which is recorded
in the Requirements Catalogue and used as the basis for both conformance and interoperability test specifications.

5.1 Conformance testing methodology

Conformance test specifications should be produced following the methodology described in 1SO/IEC 9646-1 [4]. In
summary, this methodology begins with the collation and categorization of the requirements to be tested into a tabular
form which is normally referred to as the "Protocol Implementation Conformance Statement” (PICS). Each PICS relates
to a specific protocol standard. As the requirements of 1Pv6 are distributed across a large number of documents, there
would be very little benefit in producing a PICS for each document. Consequently, the IPv6 requirements will be
collected together and categorized in a single document, the Requirements Catal ogue.

For each requirement in the catalogue, one or more tests should be identified and classified into a number of groups
which will provide a structure to the overall test suite (TSS). A brief Test Purpose (TP) should then be written for each
identified test and this should make it clear what is to be tested but not how this should be done. Finally, a detailed Test
Case (TC) iswritten for each TP. In the interests of test automation, TCs are usually combined into an Abstract Test
Suite (ATS) using a specific testing language such as TTCN-3.

5.2 Interoperability testing methodology

For a certification (or branding or logo) scheme to be meaningful, it is necessary that interoperability testing is carried
out in addition to conformance testing and that this is done in accordance with a comprehensive and structured suite of
tests. In the context of the present document, it isthis type of testing which isreferred to as " Interoperability Testing".
The purpose of interoperability testing is to prove that the end-to-end functionality between (at least) two
communicating systems is as required by the standard(s) on which those systems are based. A methodology for
developing such interoperability test specification is described in TS 102 237-1 [1] and this should be used as a guide
when developing | Pv6 test suites. This methodology is based extensively on |SO/IEC 9646-1 [4] but with some
modifications to make it suitable for interoperability testing.

In TS 102 237-1 [1], the Interoperable Functions Statement (IFS) replaces the PICS and is a statement of which
functions supported by the protocol have been implemented. However, in this framework these functions should be
clearly identified in the Requirements Catal ogue.

6 The Requirements Catalogue

The reguirements which collectively specify and characterize IPv6 are taken from a wide range of specifications and
other documentation. Building a coherent set of test specifications from these disperse requirements sources can be
made simpler by gathering the requirements together into a single catal ogue.

The Requirements Catal ogue lists |Pv6 requirements from the various sources and organizes them in a tree structure.
Each node of the treeis an IPv6 function. These functions are either explicitly mentioned or implicit in the requirements
source texts. Specific requirements are then associated to the relevant function node.

6.1 Entries in the Requirements Catalogue

Details of each requirement are entered in the Requirements Catalogue which is structured as a database. An example
database is described in annex E. This annex aso shows possible visualisation (presentation) of the data base.

ETSI

11 ETSI TS 102 351 V2.1.1 (2005-08)

For each requirement in the catal ogue the following information should be present:

6.2

the functional group to which the requirement belongs. Each functional group is a hode in the requirements
tree:

- some functional groups may be created for structuring purposes; i.e. an "implicit" functional group. Such
groups are not specifically mentioned in any of the sources but are derived during development of the
catalogue for structuring and organizational purposes;

- afunctional group may not have any specific requirement associated with it. Thisindicates that the
requirements can found in its descendents,

aunique requirement identification number as defined in clause 6.2;
the identification number(s) of the Test Purpose(s) written for this requirement, if any;

the context of the requirement. This identifies the general conditions that are necessary for the requirement to
exist. It may also be considered as a summary of the situation that leads to the specific requirement. It should
not be confused with "preambles’ specified for test cases,

the requirement in text. This should be a direct quote from the source text. However, synthesis and
simplification may be necessary in order to improve readability. However, in no event should the substance of
the source's requirement be changed in transcribing it to the catalogue;

reference(s) to the source of the requirement and the requirement type. There may be several source:type pairs
for the same requirement. For example, a requirement may come from the RFCs and have a SHOULD type;
but the same requirement may be in the IPv6 Logo criteria and have the MUST type. If so, there would be two
pairs of references and type, one for the RFC(s) and another for the IPv6 Logo criteria. Each pair comprises
the following:

- reference(s) to the source document of the requirement (e.g. RFC(s), the IPv6 Logo test document or an
ETSI 3GPP document) which should be precise and unambiguous. For example "RFC 2460,
paragraph 3 11" indicates Paragraph 1 of Section 3 of RFC 2460. A requirement may have several
sources especidly if it is specified in RFCs. The requirement reference is a so automatically linked to the
source document so that the source text can be easily located and read,;

- the type of requirement (MUST, SHALL, SHOULD, MAY) which is useful in determining whether a
requirement is optional or mandatory:

L] some reguirements may be "negative" requirements, for example "... MUST not do something ...".
In such cases the requirement type should be indicated as MUST_NOT (SHALL_NOT,
SHOULD_NOT, MAY_NOT);

= thelanguage for types may not always follow convention and may differ across different standards
organizations. For example, "can", "ought", "will" and "could" may all be used in different sources
to express a requirement. In such cases, the Requirement Type isimplied from the text and marked
by placing the type in square brackets. As a further example, "[SHOULD]" may be used for a

requirement text that is specified in the source as "ought”.

Naming IPv6 requirements

A unigue name should be provided for each requirement in the catalogue. Each requirement name will begin with
"RQ_" followed by three characters indicating which area of the |Pv6 specification it refers to and afour-digit
identifier, as follows:

RQ _COR_nnnn IPv6 Core requirements (example: RQ_COR_1254).
RQ_SEC nnnn IPv6 Security requirements (example: RQ_SEC _0237).
RQ_MOB_nnnn [Pv6 Mobility requirements (example: RQ_MOB_1198).

RQ_T46 nnnn IPv4 to IPv6 Transitioning requirements (example: RQ_T46_0471).

ETSI

12 ETSI TS 102 351 V2.1.1 (2005-08)

7 Developing test specifications

7.1 Conformance test specifications

7.1.1 Test configurations

For each test or group of tests specified in the IPv6 conformance test suites, a configuration should be defined to
identify the IPv6 roles required for the test components and the communications paths between those components.

Figure 2 shows an example configuration for conformance testing.

Configuration CF_029_C

MTC

Upper Tester

IUT

Router

Figure 2. Example conformance testing configuration

7.1.1.1 Naming IPv6 conformance test configurations

Test configurations should be named so that they can be uniquely referenced in, for example, the TTCN-3 code or TP
Language headers (7.1.2.2.2).

Configuration names should be of the form "CF_" followed by athree digit unique sequence number and the characters
" C",viz,"CF_023_C". Thisidentifier should be included in any diagram associated with the configuration, as shown
infigure 2.

7.1.1.2 Naming IPv6 test components

The components in each test configuration should be systematically and unambiguously identified. This naming is
based on the role of each component, which include the following:

. HS Host;
. RT Router;

. ND Node;

EN End Node.

ETSI

13 ETSI TS 102 351 V2.1.1 (2005-08)

Each role should be followed by a two-digit sequence number that uniquely identifies that component. This is necessary
when more than one component plays the same role. The role and the sequence number should be separated by an
underscore.

EXAMPLE: HS 01, HS 02, RT_01, RT_02.
7.1.2 Test Suite Structure and Test Purposes

7.1.2.1 Test Suite Structure

Test Suite Structure (TSS) groups should be chosen according to natural divisionsin the base specification(s) and
should follow the functionalities specified in the Requirements Catalogue. The architecture of the testing configuration
should also be taken into account such that, for example, al test purposes explicitly requiring an Upper Tester may be
collected into a single group. Other examples might be groupings of "Normal behaviour" and "Exceptional” behaviour.
7.1.2.1.1 Naming IPv6 test groups

TP groups have a short name (or identifier) and alonger, more readable title. The short name is derived from the longer
title (i.e. itisatwo or three |etter abbreviation of the longer title). For example, if the long title is "Router", the short
name should be: "RT". It is recommended that the title is followed by the short name in parentheses, for example:
"Router (RT)"In the case of subgroups both the title and the short name should reflect the sub structuring, essentially
making them path names. The group delimiter in the case of thetitleis"/". The delimiter in the case of the short name
is:"_". Asafurther example, the group "Provide IPv6 Services (PS)" which isa sub group of the "Router (RT)" group,
has the title:

. Router(RT)/Provide IPv6 Services(PS).
and the short name:

+ RT_PS.

7.1.2.2 Test Purposes

A Test Purpose (TP) should be written for each potential test of an IPv6 requirement (as identified in the Requirements
Catalogue) remembering that a requirement may need more than one TP to ensure that it is fully tested. Aswell as
describing what is to be tested, the TP should identify the initial conditions to be established before testing can take
place, the required status of the Implementation Under Test (IUT) from which testing can proceed and the criteria upon
which verdicts can be assigned.

The contents of a TP should be limited to a description of what is to be tested rather than how that testing isto be
carried out.

7.1.2.2.1 Naming IPv6 TPs

Each IPv6 requirement, as identified, in the Requirements Catalogue, will result in one or more TPs. Thus, RQs and

TPs share a common numbering scheme but with a different prefix. For Test Purposes this prefix will, naturally, be
"TP". This prefix will be followed by the four-digit sequence number taken from the requirement it corresponds to and a
two digit sequence number to permit multiple TPsto be derived from a single requirement, thus:

. TP_COR_nnnn_mm IPv6 Core TPs.
EXAMPLE 1: TP_COR_0147_04.

. TP_SEC_nnnn_mm IPv6 Security TPs.
EXAMPLE2: TP_SEC 0109 _17.

. TP_MOB_nnnn_mm IPv6 Mability TPs.

EXAMPLE3: TP_MOB_0033_05.

ETSI

14 ETSI TS 102 351 V2.1.1 (2005-08)

. TP_T46_nnnn_mm IPv4 to IPv6 Transitioning TPs.
EXAMPLE4: TP _T46_0006_32.

7.1.2.2.2 Using the TP Language

Thereis considerable benefit to be gained by having al Test Purposes written in asimilar and consistent way. With this
in mind, asimple, structured notation has been developed for the expression of TPs. Thisis described fully in annex A.

The benefits of using TPLan are:
. consistency in test purpose descriptions - less room for misinterpretation;
. simpler identification of preamble, test description and postamble;
. automatic test purpose syntax checking;
. abasisfor a TP transfer format;
. possible TTCN-3 code stub generation;
. possibility to graphically or textually render TP descriptions for different users.

Examples of the use of the language to express conformance TPs are shown below.

EXAMPLE 1:
TPid : TP_COR 0047 01
Summary : 'aligning PadN option'

RQ Ref : RQ_COR_0047
Config : CF_0_C
TC Ref : TC_COR 0047_01
ensure that {
when { | UT receives 'Echo Request' from'TNL'
cont ai ni ng ' Hop-by-Hop Options Header'
indicating 'Header Ext Length field set to 'ZERO
and | UT receives 'PadN option'
containing ' Opt Data Len field set to '4'
and containing 'Option Data aligning the Hop-by-Hop Options Header to
a nultiple of 8 octets' }
then { IUT sends 'Echo Request' to 'TN2' } }

EXAMPLE 2:

TP id : TP_COR_0047_02
Summary @ 'not aligning PadN option'
RQ Ref : RQ_COR_0047
Config : CF_005_C
TC Ref : TC_COR_0047_02
ensure that {

when { IUT receives "invalid Echo Request' from'TNL'

cont ai ni ng ' Hop- by-Hop Options Header'
indicating 'Header Ext Length field set to 'ZERO
and | UT receives 'PadN option'
containing ' Opt Data Len field set to '3
and containing 'Option Data not aligning the Hop-by-Hop'
"Options Header to a nultiple of 8 octets' }
then { IUT sends ' PARAMETER PROBLEM to ' TNL'
containing 'the Code field
i ndi cating 'code val ue 2'
and containing 'the Pointer field
indicating 'pointer value' } }

ETSI

15 ETSI TS 102 351 V2.1.1 (2005-08)

7.1.3 Test Suite development in TTCN-3

7.1.3.1 Storage of TTCN-3 elements

In order to optimize the reuse of TTCN-3 code, it is necessary to separate those elements that are generic to IPv6 (data
and behaviour for example) from those that are specific to a particular Test Suite.

Documentation

IPvé ATS Repository TTCN-13 Library

Liblpv6_Templates

\ ‘f_TP_xxxx \
\ ‘f_TF_bbbb \
f_TP__a_a_a_a_

‘f_TC... PTCr \
AT

PTC’

. TC...

Liblpv6_Functions

‘ AESI
TC ,/ ‘ ‘f_bbb_b__ -\ ‘
| |f_aaaa
- v : g
/
‘f_PR_xxx; ‘
| JtPRpbbD | ~ , ,
f PR_aaaa ' H LibCommor _Functions

= = = L ‘ ‘f_xxx)f 3 -‘__) ‘
/ ‘ ‘f_bbb_b__ - ‘

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
I
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Figure 3: Allocation of TTCN-3 elements to the ATS Repository and the TTCN-3 module Library

The following elements are considered to be specific to the Test Suite and should be stored and maintained together in a
Test Suite Repository as shown in figure 3:

. Test Cases (TC);

* Test Casefunctions (f_TC);

* Test Purpose functions (f_TP);
. Preambles (f_PR);

+ Postambles (f_PO).

Although these functions can specify testing behaviour directly in TTCN-3, most should do little more than invoke
reusable functions and use data and templates from the TTCN-3 Library which is described in more detail in clause 8.

ETSI

16 ETSI TS 102 351 V2.1.1 (2005-08)

7.1.3.2 Test Cases

From a TTCN-3 point of view, one of two basic testing configurations needs to be considered in each I Pv6 test case
implementation. The simpler of these is the non-concurrent arrangement, shown in figure 4, where thereis only one
TTCN-3 test component, the Main Test Component (MTC), which executes all aspects of the tests.

Tester SUT
MTC
Test Case uT

Preamble (f_PR)

TP Function (f_TP)

Postamble (f_PO)

Figure 4. Non-concurrent TTCN-3 testing configuration

The more complex, and more usual, test arrangement distributes atest case implementation over two or more parallel
components. This concurrent configuration is shown in figure 5.

Tester
MTC
Test Case
‘ Create/Start PTCs ‘
> ‘ Synchronize PTC PRs ‘ -
‘ Synchronize PTC TPs ‘
‘ Finalize Test & Stop ‘
PTC1 PTCn
Y
Test Case Function (f_TC) SUT Test Case Function (f_TC)
Preamble (f_PR) Preamble (f_PR)
‘ Synchronization ‘ IuT ‘ Synchronization ‘
TP Function (f_TP) TP Function (f_TP)
‘ Synchronization ‘ > < ‘ Synchronization ‘
Postamble (f_PO) Postamble (f_PO)

Figure 5: Concurrent TTCN-3 testing configuration
In this configuration the MTC only initiates the test by invoking atest case function on each Parallel Test Component

(PTC) and coordinates the execution of PTCs using synchronization. Each PTC executes all aspects of atest related to
itsown particular role. Therefore, the MTC does not interact with the SUT.

ETSI

17 ETSI TS 102 351 V2.1.1 (2005-08)
Depending on the configuration used, the test case or each test case function should invoke a preamble (f_PR), test
purpose (f_TP), and postamble (f_PO) function as described below:

. apreamble function should perform the actions required to place the IUT or EUT into the condition required
by the test purpose function; then (within that function) the test component should set its verdict based on the
success of these actions and synchronize with the MTC;

. atest purpose function should perform the actions required for the role of the test component (if applicable) to
achieve the test as specified in the Test Purpose; then (within that function) the test component should set its
verdict based on the success of these actions and synchronize with the MTC;

. a postambl e function should perform the actions required to return the IUT to a known quiescent state after
completing the test. Then, within that function, the test component should set its verdict based on the success
of these actions.

7.1.3.2.1 Naming TCs

Asthere is a one-to-one relationship between TPs and TCs, they will share acommon numbering scheme with a prefix
to distinguish between them. For Test Cases this prefix will, naturally, be "TC". This prefix will be followed by the
same numbering scheme as for TPs, thus:

. TC_COR_nnnn_mm IPv6 Core TCs.

EXAMPLE 1: TC_COR_0147_04.

. TC_SEC nnnn_mm IPv6 Security TCs.
EXAMPLE2: TC_SEC 0109 17.

. TC_MOB_nnnn_mm IPv6 Mobility TCs.
EXAMPLE3: TC_MOB_0033 _05.

. TC_T46_nnnn_mm IPv4 to IPv6 Transitioning TCs.
EXAMPLE 4: TC_T46_0006_32.

7.1.3.3 Test case functions

For each TP, one or more TC functions should be specified in TTCN-3. The TC function invokes the preamble, the TP
function (clause 7.1.3.4) and the postamble. In non-concurrent test configurations (see figure 4) there will only be one
TC function.

For configurations where the TC needs to be distributed over more than one parallel test component (see figure 5) there
will be an equivaent number of TC functions. Each TC function will carry out the parts of the preamble and postamble
specific to their particular PTC, as well asinvoking the appropriate TP function. For example, in the configuration of
figure 2 there would be corresponding TC functions running on HS 01, HS 02 and possibly the Upper Tester.

To summarize, the following guidelines apply to TC functions:
. TC Functions should only be necessary where there is more than one test component in the test architecture.
. Each PTC should have one TC Function defined for it.
. A TC Function isinvoked in the "start test component" operation of atest case.
. TC Functions should be grouped with their associated test case.

. A TC Function should implement behaviour by invoking other functions rather than by expressing it directly.
Any behaviour implemented directly in a TC Function would not be reusable in other test cases or functions.

ETSI

18 ETSI TS 102 351 V2.1.1 (2005-08)

7.1.3.3.1 Naming TC functions

Asthereis aone-to-one relationship between TCs and TC functions, they will share acommon numbering scheme with
the prefix "f_".

The name of a TC Function should include the role as well as the test case identifier, as shown in the following
example:

« f TC_COR 0051 12 HS.
The following abbreviations should be used to identify specific IPv6 roles:
. HS Host;
. RT Router;
. ND Node;
. EN End Node.

In those cases where more than one instance of a particular role is defined by a particular configuration, a 2-digit
sequence number may be appended to the role as shown in the following examples:

« f_TC_T46_0298 03 ND_02.
« f.TC_SEC 0531 01 EN_O1.

Optionally, ashort string of free text may be appended to the TC Function name. This may be used to provide further
classification and location information which would be useful for TTCN-3 programming purposes.

7134 TP functions

For each TP, one or more TP functions should be specified in TTCN-3. The TP function should only specify the test
behaviour related to the Test Purpose. A TP function should perform synchronisation as a final action and should
include neither the preamble nor the postamble. TP functions are invoked from the TC function.

In test configurations where there is only one test component (see figure 4) there will only be one TP function.

In concurrent test configurations (see figure 5) there will be a number of TP functions which may be equal to or less
than the number of components in the test configuration. For example, in the configuration shown in figure 2 it may be
that the Upper Tester component is only used to configure the IUT but, as this behaviour is not part of the test body, no
TP function will be associated with it. Consequently, there would be only two TP functions; one running on HS_01 and
one running on HS_02.

To summarize, the following guidelines apply to TP functions:
. A TP Function should implement the test purpose for one component only.

. If there is more than one test component identified in the architecture associated with a TP, there should be one
TP function for each of these components on which the TP behaviour is relevant.

. If there is only one test component identified in the test architecture, there should be only one TP function for
each TP.

. A TP function should not call other behavioural functions although computational functions can be called.
. TP functions should not contain:

- invocation of test configuration management;

- implementation of test configuration management;

- preambl e aspects;

- postambl e aspects.

ETSI

19 ETSI TS 102 351 V2.1.1 (2005-08)

7.1.3.4.1 Naming of TP functions

The names (identifiers) of TP functions should begin with the prefix "f_TP_" followed by a descriptive name (text
string). For example:

. f_TP_receiveEchoReplyAndTestChecksum.
. f_TP_sendHopLimitZeroAndReceiveTimeExceeded.
. f TP_echoProcedure.

Additionally, where it is necessary to associate a TP function with a particular component in atest configuration TP
function name should be suffixed with the role of the TP function in the test configuration.

The following abbreviations should be used to identify specific IPv6 roles:
. HS Host;
. RT Router,;
. ND Node;
. EN End Node.
For example:
. f_TP_receiveEchoReplyAndSendRedirect RT.

In those cases where more than one instance of a particular roleis defined by a particular configuration, a 2-digit
sequence number may be appended to the role as shown in the following example:

. f_TP_receiveEchoReplyAndSendRedirect RT_01.

7.1.35 Preambles and Postambles

Both preamble and postamble functions should be constructed in a similar way to TC functions (clause 7.1.3.3) and TP
functions (clause 7.1.3.4) in that they do not specify behaviour directly but use and invoke elements from the TTCN-3
Library. A preamble should also perform synchronisation asits final action.

7.1.3.5.1 Naming of Preambles and Postambles

Preamble and postamble functions should start with the prefix "f " followed by "PR" for preambles and "PO" for
postambles. These prefixes are followed by atext string specifying the role of the preamble or postamble. For example:

. f PR Basiclnitialise.

. f_PO_BasicShutdown.

7.1.3.6 Test case selection

Every test case should be selectable by means a test case selection switch. This applies even to those test cases
associated with mandatory requirements from the base specification. In order to facilitate this capability, each Test case
should be preceded by a selection statement in the control part of the test suite module, as shown in the following
example:

I'f (RQ_COR 0407)

execute (TC_COR 0407_35())
}

NOTE: The conformance test suiteisa TTCN-3 module comprising all the test cases relevant to a particular area
of IPv6, Core IPv6 for example. This set of test cases may be subset by the requirement needs of a
particular organization (e.g. IPv6 Forum or 3GPP) as defined in the requirements catalogue for the
organization. This subset could be achieved using selection switches or even be specified as different test
suite inits own right.

ETSI

20 ETSI TS 102 351 V2.1.1 (2005-08)

7.1.3.7 Test suite parameterization

It is often necessary to parameterize atest suite so that values not known at the time of writing the test cases can be used
in testing. These values (input to the TTCN-3 ATS as modul e parameters) may depend on the IUT or the test system on
which the test suite is being run.

NOTE: Test suite parameter val ues correspond to values normally found in a PICS or PIXIT.

Table 1 shows an example of how test suite parameters could be documented. The IUT Vaue column, highlighted in
grey, iscompleted at the time of testing.

Table 1. Module (test suite) parameters

Organization: IPv6 Label

Parameter Name Description Reference Type IUT Value
R HOST IP address for remote host [N/A IPAddress
T1 Response timer RFC XYZ, 3.2 |integer
7.2 Interoperability test specifications

7.2.1 Test configurations

For each test or group of tests specified in the IPv6 interoperability test suites, a configuration should be defined to
identify the IPv6 roles required for the test components and the communications paths between those components.

Figure 6 shows an example configuration for interoperability testing.

Configuration CF_015_

QE’ QEZ EUT QE3 QE4

End Node Host Router Host End Node

Figure 6: Example interoperability testing configuration

7.2.1.1 Naming IPv6 interoperability test configurations

Interoperability test configurations should be named so that they can be uniquely referenced in, for example, an
interoperability test description or in the TP Language headers (7.1.2.2.2).

Configuration names should be of the form "CF_" followed by athree digit unique sequence number and the characters
" 1", viz,"CF_023 _1". Thisidentifier should be included in any diagram associated with the configuration, as shown in

figure 6.

ETSI

21 ETSI TS 102 351 V2.1.1 (2005-08)

7.2.1.2 Naming IPv6 test components

The components in each test configuration should be systematically and unambiguously identified. Thisnaming is
based on the role of each component, which includes the following:

o HS Host;
o RT Router;
. ND Node;

. EN End Node.

Each role should be followed by a two-digit sequence number that uniquely identifies that component. This is necessary
when more than one component plays the same role. The role and the sequence number should be separated by an
underscore. For example:

e HS 01,HS 02, RT_01, RT_02.
7.2.2 Test Suite Structure and Test Purposes

7.22.1 Test Suite Structure

Test Suite Structure (TSS) groups should be chosen according to natural divisionsin the base specification(s) and
should follow the functionalities specified in the Requirements Catalogue. The architecture of the testing configuration
should also be taken into account such that, for example, al test purposes explicitly requiring an Upper Tester may be
collected into a single group. Other examples might be groupings of "Normal behaviour" and "Exceptional™ behaviour.

7.2.2.1.1 Naming IPv6 test groups

TP groups have a short name (or identifier) and alonger, more readable title. The short name is derived from the longer
title (i.e. it isatwo or three |etter abbreviation of the longer title name). For example, if the long titleis"Router", the
short name should be: "RT". It is recommended that the title is followed by the short name in parentheses, for example:
"Router (RT)"In the case of subgroups both the title and the short name should reflect the sub structuring, essentially
making them path names. The group delimiter in the case of thetitleis"/". The delimiter in the case of the short name
is:"_". Asafurther example, the group "Provide IPv6 Services (PS)" which isa sub group of the "Router (RT)" group,
hasthe title:

. Router(RT)/Provide IPv6 Services(PS).
and the short name:

+ RT_PS.

7.2.2.2 Test Purposes

A Test Purpose (TP) should be written for each potential test of an IPv6 requirement (as identified in the Requirements
Catal ogue) remembering that a requirement may need more than one TP to ensure that it is fully tested. Aswell as
describing what is to be tested, the TP should identify the initial conditions to be established before testing can take
place, the required status of the Implementation Under Test (IUT) or Equipment Under Test (EUT) from which testing
can proceed and the criteria upon which verdicts can be assigned.

The contents of a TP should be limited to a description of what is to be tested rather than how that testing isto be
carried out.

ETSI

22 ETSI TS 102 351 V2.1.1 (2005-08)

7.2.2.2.1 Naming IPv6 TPs

Each IPv6 requirement, as identified, in the Requirements Catalogue, will result in one or more TPs. Thus, RQs and

TPs share a common numbering scheme but with a different prefix. For Test Purposes this prefix will, naturally, be
"TP". This prefix will be followed by the four-digit sequence number taken from the requirement it corresponds to and a
two digit sequence number to permit multiple TPsto be derived from a single requirement, thus:

. TP_COR_nnnn_mm IPv6 Core TPs.

EXAMPLE 1: TP_COR_0147_04.

. TP_SEC_nnnn_mm IPv6 Security TPs.

EXAMPLE 2: TP_SEC_ 0109 17.

. TP_MOB_nnnn_mm IPv6 Mobility TPs.
EXAMPLE3: TP _MOB_0033 05.

. TP_T46_nnnn_mm IPv4 to IPv6 Transitioning TPs.
EXAMPLE 4: TP_T46_0006_32.

7.2.2.2.2 Using the TP Language

Thereis considerable benefit to be gained by having al Test Purposes written in asimilar and consistent way. With this
in mind, asimple, structured notation has been developed for the expression of TPs. Thisis described fully in annex A.

The benefits of using TPLan areidentified in clause 7.1.2.2.2.

Examples of the use of the language to express conformance TPs are shown below.

EXAMPLE 1:
TP id : TP_COR 1097_02
Sunmary : ' EUT forwards a traversed packet with its size equal to inconmng |ink MU

RQ ref : RQ_COR 1097
Config : CF_021_|
TD ref : TD_COR_1097_02

with { QE1 'configured with a unique global unicast address '
and QE2 'configured with a uni que gl obal unicast address'
and EUT 'configured with two uni que gl obal unicast addresses'
"on the Iink connecting QE1 and EUT and'
"on the link connecting QE2 and EUT, respectively'
and QE1 'having a larger |link MU than EUT
and EUT 'having a larger or equivalent |ink MU than Qg2

}

ensure that { when { EUT receives 'a packet with its size equals to its incoming |ink MU
containing ' QE1 as source address'
containing 'and QE2 as destination address' }
then { EUT sends 'the packet' to Qg2 }

EXAMPLE 2:

TP id : TP_COR _1130_01

Sunmary : ' EUT detects 2 packets with different hop-by-hop option contents'
"but the sane source and destination addresses in the flow | abel’

RQref : RQCOR 1130

Config : CF_021_|

TD ref : TD_COR 1130_01

with { QE1 'configured with a unique global unicast address '
and QE2 'configured with a uni que gl obal unicast address'
and EUT 'configured with 2 unique global unicast addresses'
"on the link connecting QE1 and EUT and the link '
'connecting QE2 and EUT, respectively'

ETSI

23 ETSI TS 102 351 V2.1.1 (2005-08)

ensure that { when { EUT receives 'two packets'
containing 'different hop-by-hop options'
and containing 'QEl as the source address in the flow | abel"’
and containing 'QE2 as the destination address in the flow | abel' }
then { EUT sends 'an | CMP paraneter problem nmessage' to CEl
and EUT discards 'the packets' }

7.3 Test Description development

Test Descriptions (TDs) specify the detailed steps that must be followed in order to achieve the stated purpose of each
interoperability test. These steps should be specified in a clear and unambiguous way but without placing unreasonable
restrictions on how the step is performed. TDs written in a structured and tabulated natural language are ideal when the
tests themselves are to be performed manually. If, however, tests are to be automated, test cases should be written in
TTCN-3. The development of TTCN-3 test cases does not mean that TDs should not also be produced because they
have significant value as higher-level designs of the test cases.

NOTE: TDsshould only be used in the specification of interoperability tests and not for conformance tests.

7.3.1 Naming Test Descriptions

Aswith TCs, there is a one-to-one relationship between TPs and TDs. Consequently, the naming of TDsis similar to
that described for TCsin clause 7.1.3.2.1 except that the prefix "TD_" is used instead of "TC ", thus:

. TD_COR_nnnn_mm IPv6 Core TDs.

EXAMPLE 1: TD_COR_0147_04.

. TD_SEC _nnnn_mm IPv6 Security TDs.

EXAMPLE 2. TD_SEC 0109 17.

. TD_MOB_nnnn_mm IPv6 Mohility TDs.
EXAMPLE3: TD_MOB_0033 05.

. TD_T46_nnnn_mm IPv4 to IPv6 Transitioning TDs.
EXAMPLE 4: TD_T46_0006_32.

7.3.2 Presentation of TDs

Test Descriptions should be presented as a sequence of activities and verdicts that can be followed manually by an
operator, as described in TS 102 237-1 [1]. This sequence should be tabulated with header information and the
associated Test Purpose as shown in table 2.

ETSI

24 ETSI TS 102 351 V2.1.1 (2005-08)

Table 2: Example Test Description

Test Description

Identifier: TD_COR_001_02
Summary: Autoconfigure QE using a unique address in a simple network
Test Purpose: [TP_COR_001_02 [Reference: [RQ COR 01 [Configuration: [CF_001_|

ensure that {
when {QEl 'has invoked statel ess autoconfiguration' }
then {EUT 'can address the CQE
and QE1 'can address the EUT' } }

Pre-test * QEL1 configured to use a unique (within the network) link-local address during auto-configuration
conditions: » EUT network interface is enabled
* QEL1 network interface disabled
Step Test Sequence Verdict

1 Enable QE1 network interface and wait a few seconds

2 Cause QEZ1 to send an echo request to the Link-Local
address of EUT

3 Check: Does protocol monitor show that an echo Yes No
request was sent from QE1 to EUT?

4 Check: Does QE1 receive an echo reply from EUT? Yes No

5 Cause EUT to send an echo request to the Link-Local
address of QE1

6 Check: Does protocol monitor show that an echo Yes No
request was sent from EUT to QE1?

7 Check: Does EUT receive an echo reply from QE1? Yes No

Observations

8 The TTCN-3 ATS Repository and Library

In order to facilitate the rapid and consistent production of both abstract and executable test suites, an (extensible)
library of generally reusable TTCN-3 definitionsis maintained by ETSI TC-MTS. Therelation of this TTCN-3 library
to the frame work is shown figure 1 and figure 3. Thislibrary is publicly available so that manufacturers, operators,
testing organizations and other standards bodies can make use of it in constructing 1Pv6 test suites specific to their
needs.

NOTE: The following clauses specify a number of rules on the basic library structure and the addition of modules
to the library. These rules are presented as strong recommendations (“should") because they are
considered to be based on good test programming practice. However, any TTCN-3 segments submitted
for inclusion in the IPv6 TTCN-3 Library will be expected to comply with these recommendations as if
they were mandatory.

Any TTCN-3 definition residing in the TTCN-3 Library should be independent of atest suite. Thus, definitions such as
test case functions, preamble functions, test purpose functions and postamble functions should not appear in the library
but be stored in an I1Pv6 Abstract Test Suite (ATS) Repository which is described in clause 8.3.

8.1 TTCN-3 Library structure overview
Within the library, elements are grouped into a number of different modules, for example:

. Modules for different kinds of data type and constant val ue definitions, e.g. common subtypes of basicTTCN-3
types, types specifying the protocol message structure in a particular RFC.

. Modules for template definitions which are based on some data type definitions, e.g. templates for specifying
neighbourhood discovery messages.

. Modules for different kinds of function definitions, e.g. functions implementing basic protocol behaviour,
verdict control, test component synchronization or algorithms.

ETSI

25 ETSI TS 102 351 V2.1.1 (2005-08)

8.1.1 Data types and values modules

Commonly used subtypes of TTCN-3 types are defined in separate modules based on their type kind or application
context. For example, subtypes reflecting common encoding restrictions for integer or boolean values are stored within
the TTCN-3 Common Library module for Basic Types And Values. Similarly, such subtypes for bitstring or octetstring
are stored in the Common Library module for Data Strings. These subtype definitions use the TTCN-3 encode attribute
to provide additional information to codecs because the TCI [3] currently does not support access to subtyping
information.

type Unt2 integer (0..3) with { encode "2 bits" } // defined in Li bConmon_Basi cTypesAndVal ues
type Cctet2 octetstring length(2) with { encode "2 octets" } // defined in Li bCormon_DataStrings

Also, types, constants, and module parameter definitions related to a particular protocol, I1Pv6 for example, should be
organized into one module per RFC. For each protocol a special module defines a message "meta-type" which includes
al protocol messages. Another module collects common information element types which isimported in each of the
RFC modules.

More details about the modularization of data types and valuesin the TTCN-3 Library can be found in the electronic
attachment of annex B.
8.1.2 Templates modules

Template definitions should follow the same modul arization as the data types they are based on. The following rules
apply to template definitions themselves:

. Templates should be identified with meaningful names rather than numbers.

. Templates should not modify other modified templates. Base templates (which are modified by other
templates) must be identified in their naming.

. Template definitions should avoid using matching attributes such as"*" or "?" for complete structured values,
e.g. record or set of values.

8.1.3 Modules of TTCN-3 functions

The IPv6 library differentiates between protocol dependent functions, computational functions and common functions
such as those for synchronization, verdict handling or data type manipulation. Again, functions should be modularized
according to a particular application context. Function modules may also include data types and templates which are
only used by the functions defined in that module. The following general rules apply:

. Functions should use the runs on statement wherever thisis possible.

. Each function should provide a return value using the return value enumeration defined in the Common
Library Verdict Control module.

. The stop statement should be used with care in functions (controlled test component shutdown should be
aways ensured).

8.1.3.1 Verdict control modules

The Verdict Control module is part of the Common Library and defines the TTCN-3 FncRetCode type which should be
used by afunctioninthe TTCN-3 Library (aswell asin an ATS) to indicate its execution status to the calling function
in the return value. Thistype is defined as an enumeration with the values e_success, e_error and e_timeout.

In addition, this module includes three verdict setting functions which set atest component verdict based on the
FncRetCode value passed into the functions. The function f_setVerdict maps the values to directly to a pass, fail, and
inclusive verdict which is useful, e.g., in test purpose functions. Other functions may be used to assign the verdict more
appropriately for behaviour which is part of a preamble or postamble function. The functions in this module should only
be called from functionsin the ATS repository, but not by functions of the TTCN-3 library.

ETSI

8.1.3.2

26 ETSI TS 102 351 V2.1.1 (2005-08)

Synchronization module

The Sync Module is part of the TTCN-3 Common Library and specifies a generic mechanism which can be used to
synchronize one or more test components in atest case. The main concepts underlying this mechanism are that one
component acts as a synchronization server (usually the MTC) and al other components, i.e. the PTCs, act as
synchronization clients. In atest case the synchronization may then be used to synchronize clients on one or more
synchronization points after, for example, completing actions in a preamble or test body function. Depending on the test
case there may be a need for more synchronization(s), e.g. in atest purpose function. A special case of synchronization
isthe one with only a single test component which is called "self synchronization".

The Sync module provides a number of basic functions which realize this mechanism.

. Server synchronization functions:

NOTE 1:

require specification of name and number of synchronization points as well as the number of clients,
which are to participate in each synchronization, in their parameters,

For preamble and test body synchronization the synchronization point names ¢_prDone and ¢_tbDone
should be used. These are defined as part of the Sync module.

are implemented to await reports from the specified number of clients about their success in reaching
each specified synchronization point, i.e. READY or STOP messages sent by clients; after that the server
reports to all clients the success or failure of one or more of them to reach the synchronization point, i.e.
again by sending aREADY or STOP message to each client; if one of the specified clients fails to report
to the server within a given time limit the function sends a STOP to all clients;

can be used to overwrite the default time limit the server waits for clientsto initiate their
synchronization;

always set the verdict of the test component acting as the server, i.e. to fail if one of the clients reports a
failure of reaching a synchronization point or failsto reply within a given time limit and a pass verdict in
all other cases.

. Client synchronization functions:

NOTE 2:

NOTE 3:

NOTE 4:

require the specification of only one synchronization point name and the current execution status, i.e. asa
FncRetCode value, in their parameters;

The execution status will be used by the client synchronization function to report to the server if a
synchronization point was successfully reached or not, i.e. e success will report a success whereas other
values will report afailure.

For preamble and test body synchronization the predefined synchronization points ¢c_prDone and
¢_tbDone should be used.

report to the server the success or failure to reach a synchronization point based on the execution status;
in al cases the client then awaits a response by server; upon aREADY response the function exits
normally; upon a STOP response the function will wait for some time and then stop test component
execution;

In order to prevent the test component from stopping without the execution of a postamble, a TTCN-3
altstep should be defined which (when receiving the server STOP message) invokes that postamble. This
altstep shall then be activated as a default before the client synchronization function invocation.

can also be used set verdict of the test component acting as the client before the synchronization with the
server, e.g. tofail if the execution statusiserror, inconclusive if timeout, or passif success.

ETSI

27 ETSI TS 102 351 V2.1.1 (2005-08)

. Self synchronization functions:

- allow the reuse of TTCN-3 shutdown altsteps also in non-concurrent test case configurations, i.e. the
triggering of a postamble based on a (server) STOP message; in self synchronization a test component
actsin essence as both, a client and a server;

- require the specification of one specific synchronization point and the current execution status, i.e. asa
FncRetCode value, in their parameters;

- report the success or failure to reach a synchronization point to the same test component based on the
execution status; the behaviour upon receipt of synchronization messagesis exactly the same asin the
case of client synchronization functions;

- can be used to set the verdict of the test component, e.g. to fail if the execution statusiserror,
inconclusive if timeout, or passif success.

The use of the synchronization functions imposes certain requirements upon the ATS code:

. The test component types defined in an ATS for the MTC and PTCs must be type compatible to the
Server SyncComp and ClientSyncComp types defined in the Sync module. In the case of self synchronization
the MTC type should be type compatible to the SelfSyncComp type.

. As part of the establishment of the test configuration in atest case and before the possible execution of any
synchronization function, the syncPort of all test components acting as synchronization clients should be
connected to the syncPort of the component acting as the synchronization server. In the case of self
synchronization the syncSendPort needs to be connected to the syncPort of the MTC. Similarly, these ports
should be disconnected as part of the test configuration tear down. The Sync module contains function
definitions for this purpose.

All Sync module functions are well documented in the electronic TTCN-3 Library provided in annex A. Also part of
TTCN-3 Library isa Sync Example TTCN-3 module which contains executable example test cases illustrating
client/server and self synchronization as well as the triggering of postambles based on server STOP messages.

8.1.3.3 IPv6 behaviour modules

A number of modules specify |Pv6 behaviour. Each module describes behaviour for one particular RFC. Functionsin
I Pv6 behaviour modules should:

¢ neither set the test component verdict nor stop test execution but instead indicate their execution status using a
FncRetCode return value;

¢ betest configuration independent, i.e. they should define information such as 1Pv6 addresses as function
parameters;

e only usethe IPv6 interface, i.e. they should neither configure the test system adapter nor invoke
synchronization functions,

¢ include external IPv6 related computation functions which may be external functions, e.g. to compute the
checksum of an Ipv6 packet.

8.1.4 Adding modules to the TTCN-3 Library

Users or organizations may submit their own modules for addition to the TTCN-3 Library. Such modules should be
submitted to ETSI Technical Committee MTS for review. Details of the submission process can be obtained from the
ETSI Secretariat at mtssupport@etsi.org.

Thislibrary itself can be accessed from http://www.ipt.etsi.org

8.1.5 ATS Repository structure overview
The ATS Repository is conceptually located above of the TTCN-3 library. It contains test suite specific TTCN-3

definitions including test case functions, test component types, test configuration functions, configuration message
types and I pv6 Node component types which reuse definitionsin the TTCN-3 library asillustrated in figure 3.

ETSI

mailto:mtssupport@etsi.org
http://www.ipt.etsi.org/

28 ETSI TS 102 351 V2.1.1 (2005-08)

The TTCN-3 definitions part of the ATS Repository can be further classified as being reusable or not reusable within
the context of an ATS. The definitions which are reusable are stored in severa ATS common TTCN-3 modules. Such
definitions include:

module parameters for atest suite;
common test suite type definitions, e.g. test component types, configuration message types;

preamble, test purpose, and postamble functions which invoke and eval uate the return values of functions
implementing 1pv6 behaviour and then synchronize;

configuration functions which establish or tear down specific TTCN-3 configurations, i.e. connect and map
ports; they include also functions which compose address information for test components and test adapter for
a specific test configuration (used by atest purposes);

atstep definitions which are used as defaults by test components, e.g. to filter out unwanted I P packets, handle
neighbourhood advertisements or a shutdown in test component synchronization.

TTCN-3 definitions which are not reusable in an ATS repository are:

TTCN-3 test case statements;

test case functions which invoke the relevant configuration, preamble, test purpose, and postamble function for
agiven test component role;

the control part which should use Boolean test selection switches to invoke test cases.

More details about these modules can be found in the ATS Repository provided as part of the electronic annex B.

9

TTCN-3 naming conventions

The IPv6 TTCN-3 library will be publicly available for test developersto use and, in a controlled way, extend. It is,
therefore, desirable to specify a naming convention to cover each of the TTCN-3 elements which require an identifier.

The naming convention is based on the following underlying principles:

when constructing meaningful identifiers, the general guidelines specified for naming in clause 6 of
EG 202 106 [2] should be followed;

in most cases, identifiers should be prefixed with a short alphabetic string (specified in table 3) indicating the
type of TTCN-3 element it represents;

prefixes should be separated from the body of the identifier with an underscore (*_"):

EXAMPLE 1. c_sixteen.

only module names, data type names and module parameters should begin with an upper-case letter. All other
names (i.e. the part of the identifier following the prefix) should begin with alower-case |etter;

the start of second and subsequent wordsin an identifier should be indicated by capitalizing the first character.
Underscores should not be used for this purpose:

EXAMPLE2: f_authenticateUser().

Table 3 specifies the naming guidelines for each element of the TTCN-3 language i ndicating the recommended prefix
and capitalization.

ETSI

29

ETSI TS 102 351 V2.1.1 (2005-08)

Table 3: IPv6 TTCN-3 naming convention

Language element Naming convention Prefix Example Notes

Module Use upper-case initial letter none IPv6Templates

TSS grouping Use all upper-case letters as |none TP_RT_PS_TR

specified in clause 7.1.2.1.1

Item group withina |Use lower-case initial letter none messageGroup

module

Data type Use upper-case initial letter none SetupContents

Message template Use lower-case initial letter m_ m_setuplnit Note 1

m_setupBasic

Message template Use lower-case initial letters ~ |mw_ mw_anyUserReply Note 2

with wildcard or

matching expression

Signature template |Use lower-case initial letter S s_callSignature

Port instance Use lower-case initial letter none signallingPort

Test component ref |Use lower-case initial letter none userTerminal

Constant Use lower-case initial letter c_ ¢_maxRetransmission

External constant Use lower-case initial letter CX_ cx_macld

Function Use lower-case initial letter f f authentication()

External function Use lower-case initial letter X fx_calculateLength()

Altstep (incl. Default) |Use lower-case initial letter a_ a_receiveSetup()

Test case Use numbering as specified in |TC_ TC_COR_0009_47_ND

clause 7.1.3.2.1

Variable (local) Use lower-case initial letter vV v_macld

Variable (defined Use lower-case initial letters |vc_ vc_systemName

within a component)

Timer (local) Use lower-case initial letter t t_wait

Timer (defined within |Use lower-case initial letters |tc_ tc_authMin

a component)

Module parameter Use all upper case letters none PX_MAC_ID Note 3

Parameterization Use lower-case initial letter p p_macld

Enumerated Value Use lower-case initial letter e e_syncOk

NOTE 1: This prefix must be used for all template definitions which do not assign or refer to templates with
wildcards or matching expressions, e.g. templates specifying a constant value, parameterized
templates without matching expressions, etc.

NOTE 2: This prefix must be used in identifiers for templates which either assign a wildcard or matching
expression (e.g., ?, *, value list, ifpresent, pattern, etc) or reference another template which assigns
a wildcard or matching expression.

NOTE 3: In this case it is acceptable to use underscore as a word delimiter.

10

TTCN-3 comment tags

Any TTCN-3 definition in the Test Suite Repository or Library should contain embedded comment tags. These
comment tags can be used by tools to extract information from the TTCN-3 code to create, for example, aHTML-based
reference documentation.

Comment tags which cover one or more lines should be specified using block comments, asillustrated:

| % e
* @lesc This line of text is nowidentified as a description
* whi ch covers nmultiple |lines

Comments tags specified within asingle line may be specified using line comments, as illustrated:

/1 @ut hor John Doe

Table 4 lists the tags that can be used in ETS| TTCN-3 test specifications with a short description of the intended use of
each tag. Tools may support other, non standard tags. Such tags should not be used in TTCN-3 modules standardized by
ETSI.

NOTE: Tools may also extract other information from the TTCN-3 code based, for example, on TTCN- 3

keywords. The definition of that extraction is beyond the scope of the present document.

ETSI

30 ETSI TS 102 351 V2.1.1 (2005-08)

Table 4: TTCN-3 Comment Tags

Tag Description

@author This tag should be used to specify the names of the authors or an authoring organisation
which either has created or is maintaining a particular piece of TTCN-3 code.

@desc This is probably the most import of all the tags. It should be used to describe the purpose of
a particular piece of TTCN-3 code . The description should be concise yet informative and
describe the function and use of the construct.

@remark This tag may be used to add additional information, such as highlighting a particular feature
or aspect not covered in the description.

@img This tag may be used to associate images with a particular piece of TTCN-3 code.

@see This tag may be used to refer to other TTCN-3 definitions in the same or another module.

@url This tag should be used to associate references to external files or web pages with a
particular piece of TTCN-3 code, e.g. a protocol specification or standard.

@return This tag should only be used with functions. It is used to provide additional information on
the value returned by the given function

@param This tag is used to document the parameters of parameterized TTCN-3 definitions.

@version This tag is used to state the version of a particular piece of TTCN-3 code.

The following provides some basic guidelines on the usage of tags for specific TTCN-3 definitions:

each TTCN-3 module should use the @author, @version and @desc tags;

the @desc tag should be used with all TTCN-3 definitions. However, this should not be taken to the extreme.
For example, it is probably not useful to tag literally every single constant or template declaration. It isleft to
the discretion of the writer to find the right level of use. At least all major constructs such as test cases and
functions should have a comprehensive description:

- when a TTCN-3 definition uses module parameters, it is also recommended to mention this explicitly in
the description;

- descriptions for behavioural constructs should mention if they set the test component verdict and also all
known limitations of the construct;

- descriptions for type definitions, e.g. component types, should mention if the type has been designed to
be type compatible to another type or vice versato be used as a basis for other type definitions;

the @see tag should be used to make dependencies between TTCN-3 definitions which are described by a
@desc tag more explicit in the documentation, e.g. if some TTCN-3 definition uses a module parameter then
its TTCN-3 definition should be referenced to using a @see tag;

where applicable, parameterized constructions such as functions, altsteps and templates should use the
@param and @return tags. The @param tags should first list the parameter name and then a brief description
of how this parameter is used by the construct;

the @ur| tag should be used to refer to the specification from which the TTCN-3 definition was derived from,
e.g. atype definition could refer to a particular RFC IETF page. In some cases it may be necessary to use the
@desc tag instead for this purpose as documents often are hard to accessinterndly, i.e. it may only be possible
to specify areference to a complete document but impossible to point to a very specific clause in this
document;

the @url and @img tag may be used to link to relevant documentation such as Test Purposes or original
requirements or even drawings of test configurations. Generally, the corresponding Test Purpose (in the
TSS& TP) and to the corresponding Requirement (in the Requirements Catalogue) should be linked from the
relevant TTCN-3 test case definition;

the @remark tag may be used with any TTCN-3 definition. It should be used sparingly, e.g. possibly to
indicate how a TTCN-3 definition should not be used.

ETSI

31 ETSI TS 102 351 V2.1.1 (2005-08)

11 Interaction between the test system and the SUT

In order to be able to completely automate conformance and interoperability testing, the upper interface of an IPv6 IUT
(or in the case of interoperability testing, the EUT or QE) needs to be accessible to the TTCN-3 test system. Of special
importance is the automated and controlled start up of the IUT prior to the execution of TTCN-3 code.

The specification of interfaces for performing interactions with an 1Pv6 stack is not standardized in IETF RFCs.
Consequently, implementations of this interface are vendor specific and may vary between different IUTs. In order to
implement atest suite independent of some given vendor's API, atest system needs to observe and control that API
indirectly viaan Upper Tester Server (UTS) which residesin the SUT as shown in figure 7. The test system
communicates with the UTS using an abstract, client-server based protocol, the Simple Control and Observation
Protocol (SCOP).

The client part of the protocol residesin the TTCN-3 test system and is called the Upper Tester Client (UTC).

The purpose of the UTS is to transform SCOP messages received from the UTC into interactions via the
non-standardized IUT interface and vice versa.

NOTE: TheUTSimplementation is not part of the TTCN-3 test system executable. It is expected to be provided
either by the implementer of the IUT or the party which intends to execute test casesin the TTCN-3 IPv6
test suite which require interaction via the upper interface. This clear separation of UTS and the test
system implementation ensures, for example, that the test system will not be directly affected if the SUT

crashes.
IPv6 Test System
TTCN-3 Test Case
Main Test Component IPv6 SUT (Host)
IPv6 (Host) Upper Tester
Upper_ Tester Test Server
Client
Component A
y
TRI IPv6 Host
T T T T T - (IUT)
SUT Adapter
SCOP IPv6 IPv6 SCOP
Transport Transport Transport Transport

Figure 7: An example test configuration with an upper tester

11.1 The Simple Control and Observation Protocol (SCOP)

The set of SCOP messagesis asfollows:

Scopl ni t Request (Test CaseNane, [Parans])
ScopReset Request ([Parans])

ScopResponse (Code, Description)

ScopDat aRequest (Command, [Parans], [Data])
ScopDat aResponse (Code, Data)

The full definition of these primitives and their encodings can be found in annex C.

ETSI

32 ETSI TS 102 351 V2.1.1 (2005-08)

11.1.1 Upper Tester Server (UTS)

The UTS provides a SCOP interface towards the TTCN-3 test system (always acting in a server role). It should also
support the SCOP transport protocol on the IUT-UTS interface by faithfully transforming the SCOP primitives to
ensure the following interactions:

Upon receipt of aScopl ni t Request primitive the UTS should configure and (re)start the IPv6 IUT. The
test case name specified in the primitive should be used to select IPv6 stack configuration parameters
necessary to start the IUT in the desired configuration. After the completion of this action the UTS should
respond with a ScopResponse primitive where the response Code parameter should be either "OK" or an
Error code (if the IUT did not start correctly).

Upon receipt of aScopReset Request primitive the UTS should reset the IPv6 IUT which may involve
restarting the IUT. After the completion of this action the UTS should respond with aScopResponse
primitive where the response Code parameter should be either "OK" or an Error code (if the IUT did not reset
correctly).

Upon thereceipt of aScopDat aRequest primitive that specifiesasendVi al ut command, the UTS
should perform the actions(s) required for the IUT to send an IPv6 packet equivalent to the packet provided in
the ScopDat aRequest primitivei.e. the provided IPv6 packet is used to set the parameters in the required
action(s). After the completion of thistask the UTS should respond with an ScopDat aResponse primitive
where the response Code parameter should be either "OK" or an Error code (if the action could not be
completed correctly) and with the Data parameter empty.

Upon thereceipt of aScopDat aRequest primitive that specifiesaget Vi al ut command, the UTS should
perform the action(s) required to the IUT retrieve the |Pv6 packet that it received. An IPv6 stack may
implement the notification of 1Pv6 packet arrival to applications either viaa polling or interrupt scheme. As
SCOP uses a polling scheme, the UTS isresponsible for converting any interrupt driven mechanismto a
polling scheme. For example, the UTS may use a polling timer to wait for a notification by the IUT. Note that
apolling scheme impliesthat thereis a FIFO buffer in either the IUT or the UTS. After the completion of this
task the UTS must respond with a ScopDat aResponse primitive where the response Code parameter
should be either "OK" or an Error code (if the action could not be completed correctly). In the case that no
message was received the Dat a parameter should be empty.

NOTE: Theactua implementation of SCOP message transformations towards the IUT, e.g. into IUT function

11.2

calls, and vice versais beyond the scope of this document. A UTS may even be implemented for a
manual transformation, e.g. as agraphical user interface which displays the SCOP message sent by the
test system in some format to a human user. In the interest of automated test system execution, however,
it is strongly recommended that the transformation isimplemented in software.

The Upper Tester Client (UTC)

The upper IUT interfaceis driven viathe UTS by a dedicated test component that acts as the TTCN-3 Upper Tester
Client (UTC). This component is created in all test cases which require interaction(s) via the non-standardized upper
IPv6 stack interface. It uses SCOP primitives to communicate with the UTS. These primitives and their encodings
(transmitted over the SCOP transport) are defined in annex B. The TTCN-3 test system codecs and SUT adaptation
layer handle the encoding, decoding, and transport of the TTCN-3 SCOP messages.

NOTE 1: It isoutside the scope of the UTC to start the UTS in the SUT. Nevertheless this condition hasto be

fulfilled before any UTC behaviour executes.

NOTE 2: If aUTC participatesin atest case then a separate synchronization by the MTC with all other test

components must be included to prevent that the other PTCs attempt to interact with the IUT beforeitis
initialized.

ETSI

33 ETSI TS 102 351 V2.1.1 (2005-08)

The UTC mainly interacts by sending an ScopDat aRequest to the UTS and then waiting on an

ScopDat aResponse primitive from the UTS where the response Code parameter should be either "OK" or an Error
code (if the action could not be completed correctly). Should the UTS fail to respond or respond with a
ScopResponse primitive which contains an error code, the UTC should attempt to reset the IUT using the
ScopReset Request primitive.

NOTE 3: 1Pv6 packets returned by the UTS as aresult of repeated requests for data (i.e. ScopDataRequest with the
get Vi al ut command) may not always arrive in the order expected.

NOTE 4: It ispossibleto realize SCOP based message exchangesin TTCN-3 test suite implementations using
either message-based communication or procedure based communication.

ETSI

34 ETSI TS 102 351 V2.1.1 (2005-08)

Annex A (normative):
A formal notation for expressing test purposes

Al Introduction to TPLan

This annex defines a simple but formal notation for the expression of Test Purposesin a consistent and structured form.
This notation, called TPLan, provides structure through the use of keywords defined in table A.1. However, because
Test Purposes need to be expressive, TPLan allows the TP writer considerable freedom in the use of unstructured text
between the keywords.

The syntax of this notation applies to Test Purposes for both conformance and interoperability testing. The only
difference being that in the former case the keywords IUT and TESTER should be used. In the latter case keywords
EUT and QE should be used.

The notation provides for header information to be included with the actual description of each TP whichisreferred to
asthe TP body. It also allows TPsto be grouped to provide the Test Suite Structure (TSS).

Table A.1: TP notation keywords

TSS header keywords TP body keywords
aut hor accepts
dat e after
title and
version bef ore
cont ai ni ng
TP grouping keywords di scards
end ensur e
group EUT
id from
obj ective gener at es
i ndi cating
TP header keywords Iutr
config not
id or
r ef CE (optionally numbered QE1, QE2 etc.)
RQ receives
sunmary rejects
TC sends
D set
TP state
TESTER
t hat
t hen
to
when
Wit h
within

For conciseness and with a few notable exceptions, the keywords in table A.1 are shown in lower-case. However, these
keywords are not fully case sensitive and may be capitalized. For example, the keyword group may also be written as
Group. Other combinations of upper- and lower-case |etters in keywords should be strictly avoided. Certain keywords
suchas TP, IUT, EUT, RQ, TC, TD, TESTER and QE should always appear in upper case.

Comments shall be introduced by the string”--" and terminated at the end of the same line.

ETSI

35 ETSI TS 102 351 V2.1.1 (2005-08)

A.2 TSS Header

The complete TSS& TP specification shall begin with the following header:
. Title
name of the TSS& TP as quoted free text;
. Ver si on
version number as three numeric values separated by dots (".");
. Dat e
date as three numeric values separated by dots (".") or ‘forward dlash ("/");
. Aut hor
document author as quoted free text.

Note that each keyword may optionally be followed by a colon (":").

An example TSS& TP header:

Title "My TSS&TP as an exanpl e’

Version : 1.0.0

Dat e © 29.11.2004 -- could also be witten as 29/ 11/ 2004
Aut hor : 'ETSI STF276'

A.3 Grouping

TP groups may be nested to provide sub-grouping. The contents of the group may be other groups (sub-groups) or TPs
or both sub-groups and TPs. A TSS& TP does not have to be structured but if it isthen each group in that structure shall
have the following group header:

. G oup

- start of anew group. Includes group number (e.g. 1.1) and along form of the group identifier as
described in clause 7.1.2.1.1;

. Cbj ective
- a short quoted free text description of the objective of the test group.

The TSS (Test Suite Structure) shall be expressed using the Group keyword followed by the group number and by an
optional string of free text. The end of a group shall be indicated by the keyword pair end Group followed by the group
number.

Indentation may be used to indicate a sub group. But in cases of deep sub-grouping this should be avoided for
readability reasons.

In order to aid readability the end group keywords shall be followed by the group number.

An example of one group and a sub group:

Goup 1 'Router (RT)' -- sone optional free text can go here
bj ective 'Test Purposes for Router'

Goup 1.1 ' Router(RT)/Provide | Pv6 Services(PS)'

Obj ective ' Test Purposes for Provide |Pv6 Services'

... TPs or nore subgroups can go here ...

End Goup 1.1

... TPs or nore subgroups can go here ...
End Goup 1

ETSI

36 ETSI TS 102 351 V2.1.1 (2005-08)

A.4 TP Header

Each TP shall begin with the following header.:
. tp id
the TP Identifier of the form TP_aaa_nnnn_mm, as defined in clause 7.1.2.2.1;
e summary
free text descriptive title of the TP;
. RQ ref
areference to the original requirement of the form RQ_aaa nnnn, as defined in clause 6.2;
. config
areference to the relevant testing configuration of the form CF_nnn, as defined in clause 7.1.1;
. TC ref orTD r ef
areference to the corresponding Test Case (for conformance) or Test Description (for interoperability).

Note that each keyword may optionally be followed by a colon (":").

For example:
TP id : TP_COR 0001
Sunmary : ' Padl option'

RQ Ref : RQ_COR_0001
Config : CF 001_C
TC Ref : TC_COR 0001

A5 TP body

The main body of the TP follows the header and it is here that the test purpose is described in detail. The TP is generally
written from the viewpoint of the lUT or EUT. Each TP description shall begin with the keywords ensure that
followed by the remainder of the description enclosed in curly braces.

For example:

ensure that {

-- TP description goes here

The when and then statements describe stimuli and responses (interactions) as seen from the point of view of the IUT
(or EUT). Generally these are of the form:

ensure that {
when { ... } -- actions described fromthe viewoint of the |UT or EUT.
then { ... } -- 1UT or EUT responses and ot her behavi our
}
These statements may be repeated in any order and any number of times, for example:

ensure that {
when { ... }
then { ... }
when { ... }
then { ... }

ETSI

37 ETSI TS 102 351 V2.1.1 (2005-08)

A.5.1 The with statement

The with statement may be optionally used to express theinitia state or condition of the I[UT or EUT from which the
TP description begins. If used, the with statement shall precede the ensur e that statement. The with statement does not
define the steps or actions needed to reach the starting condition, only the condition itself. The conditions shall be
expressed as free text. Multiple conditions shall be logically concatenated using the Boolean operators and, or, not. The
general format of the with statement is:

with { IUT condition 1 and condition 2 and not ...etc...}
For example:

with { IUT "inidle state' and 'port80 open' }
ensure that {
when { ...
then { ...
when { ...
then { ...

A.5.2 The when statement

The when statement shall express an action, in most cases performed by the tester (or QE) and observed by the IUT (or
EUT). Typically thiswill be areceives statement (i.e. the IUT has received a stimulus) with the name or description
(expressed as free text) of the received message.

I UT receives 'a nessage'

In cases where there is more than one test interface in the test configuration the keyword from may be added to the
receives.

IUT receives 'a nmessage' from'sone interface'

Optionaly, the expected message fields may be described using the containing keyword followed by a free text
description. Also optionally, the values of these fields may be described in free text following the indicating keyword
or the set to keywords.

I UT receives 'a nessage' containing 'description of a field'
indicating 'expected value of a field'

Other keywords that may appear in the when statement are and, or, not. For example:

when { I UT receives 'a nessage' from'node 1'
containing 'field 1' indicating 'any valid val ue'
and containing 'field 2' set to '33
and | UT receives 'a second nessage'

}
A.5.3 The then statement

The then statement shall express the expected response to the previous when statement. In most cases the responseis
performed by the IUT (or EUT) and observed by the tester (or QE). Typically thiswill be a sends statement followed
by the name or description (expressed as free text) of the sent message.

| UT sends 'a nessage'
In cases where there is more than one test interface in the test configuration the keyword to may be added to the sends.
For example:

I UT sends 'a nessage' to 'sone interface'
The syntax of the contents of sent messages is the same as that for the receive statement. For example:

| UT sends 'a nessage' containing 'description of a field indicating 'expected value of a field'
Other keywords that may appear in the then statement are and, or, not. For example:

then { IUT sends 'another nessage' to 'node 1'
containing 'field 3" indicating 'any valid val ue'
and containing 'field 4' indicating 'any valid val ue'
and | UT sends 'yet another nessage'

ETSI

38 ETSI TS 102 351 V2.1.1 (2005-08)

A.5.4 Other behavioural statements

The keywords accepts, discar ds, ignor es, rgj ects may be used to describe other possible response to a received
message. For example:

I UT accepts 'the nmessage'
I"UTOirgnores 'the nessage’
I-EJTo:ii scards 'the nessage'
I-[JTO:ej ects 'the message'

The state keyword shall be used to express state information. For example:

| UT state 'changes from|IDLE to ACTI VE
-- or
IUT state 'renains in | DLE

The keywords befor e, within and after are used to express ordering, especially in the context of timers.

For example:

before '"timer T1 expires'
-- or

within 'two minutes'

-- or

after '15 seconds'

The following example shows a more complete use of the then statement using the above constructs:
then { EUT accepts 'inconing request’
and EUT sends 'a nmessage to Node 1' within '15 seconds'
and EUT state 'changes to ERROR

A.6 The TPLan Grammar

The TPLan grammar is defined below. This can be used either as areference or as input to parser generator tools.
Table A.2 defines the syntactic conventions that should be used when reading the TPLan BNF.

Table A.2: The syntactic metanotation

n= is defined to be

abc the non-terminal symbol abc
abc xyz abc followed by xyz

abc | xyz alternative (abc or xyz)

[abc] 0 or 1 instances of abc
{abc} 1 or more instances of abc
[{abcl] 0 or more instances of abc
() textual grouping

"abc" the terminal symbol abc

/1 BNF grammar for TSS & TP | anguage (TPLan)

/1l Version: 1.0

/1 TSS part
1. tssandtp ;= KWD_tssandtp gstring
tss_version
date
aut hor
tss;
2. tss_version ;= KWD_version
nuneric "." numeric "." nuneric;
3. date ;1= KWD_date
(numeric "." numeric "." numeric)

ETSI

4. author ;= KWD_aut hor
gstring
5. tss = {group | tp}
6. group :i= group_id
[group_obj ecti ve]
[{group | tp}]
end_group
7. group_id 1= KWD_group
nuneric [{"." numeric}]
gstring
8. group_objective ;= KWD_group_obj ective
gstring
/1 TP part
9. tp = header
body;
/1 TP Header
10. header =tp_id
sunmary
cat al ogue_r ef
config_ref
tc_ref
11. tp_id o= KAD tp_id area nuneric<4> "_" nuneric<2>
12. summary KWD_t p_summary qgstring;
13. catal ogue_ref = KWD_cat al ogue_ref area nuneric<4>
14. config_ref = KWD_config "CF_" numeric<2>
15. tc_ref = KAD_ tc_ref area nuneric<4> " _" nuneric<2>
16. area tp_area | tc_area | td_area | rq_area
17. body = [condi tions]
KMD ensure KWD_t hat
begin_tp
[{actions | responses}]
end_tp;
18. conditions ::= KWD_condition
begi n_condi ti ons
[condition [{KWD Bool ean condition}]]
end_conditions
19. condition = [KWD_iut] [KWD_state] gstring
20. actions ;= KWD_action
begi n_acti ons
[action [{KWD _Bool ean action}]]
end_actions
21. action o= KWD L UT
[KMD_receive] gstring
[KAD_from gstri ng]
[{contents}]
[{ti me_constraints}];
22. contents ;= [K\D_Bool ean] KWD_cont ai ni ng
content [{content}];
23. content = gstring
[{indications}];
24. indications ;= KWD_i ndi cation
i ndi cation [{KWD_Bool ean i ndication}];
25. indication ti=qgstring
26. responses : 1= KWD_response
begi n_r esponses
[response [{KWD _Bool ean response}]]
end_r esponses
26. response 1= KWL UT
[(KMD_send | KWD other_rsp)] gstring
[KMD to (KWD_IUT [gstring] | gstring)]
[{contents}]
[{tine constraints}];
28. time_constraints::= KMD tlnEout gstring;
gstring e G
/'l Keywords etc.
29. tp_area = TP.COR" | "TP.SEC" | "TP.MB " | "TP_TRA ";
30. tc_area = "TCCOR" | "TC.SEC " | "TC_MOB_" | "TC_TRA ";
31. td_area = "TDCOR" | "TD.SEC" | "TDM®B " | "TD_TRA ";
32. rq_area = "RQCOR" | "RQSEC" | "RQMOB " | "RQ TRA "
33. KWD_action ;= "when
34. KWD_aut hor = "author" Delim
35. KWD_bool ean = "and" ["not"] | "or" | "not"
36. KWD_cat al ogue_r ef = "RQ'" "ref" Delim
37. KWD_condition = "with";
38. KWD _config = "config" Delim
39. KWD_cont ai ni ng = "containi ng"

39

| (nuneric "“/" nuneric "/" nuneric);

ETSI

ETSI TS 102 351 V2.1.1 (2005-08)

KWD_dat e
KWD_ensur e
KWD_f rom

KWD_gr oup :
KWD_gr oup_obj ective ::
KWD_group_title
KWD _i ndi cati on
KWD_i ut

KWD_ot her _rsp
KWD_QE

KWD_r ecei ve
KWD_r esponse
KWD_send

KWD_st at e

KWD tc_ref

KWD_t hat

KWD_t i neout
KWD t o

KW tp_id

KWD_t p_summary
KWD_t ssandt p
KWD_ver si on

Delinmters etc
Del i m

end_gr oup
begin_tp

end_tp

begi n_condi tions
end_condi tions
begi n_contents
end_contents
begi n_acti ons
end_acti ons
begi n_r esponses
end_r esponses
L_BRACE

R_BRACE

Wi t espace and comments
space_synbol
{ "[\V32\r\n\t]"

| -t (v

<TERM NAL, H DDEN> ::

40

"date" Delim
"ensure";
"front;
"group";
"obj ective"
“title";
"indicating" | "set" "to";
“furt | "EUT' | "TESTER' |
"rejects" | "discards" | "accepts
"QE" [numeric];

"receives" | "generates";

"t hen";
"sends";
"state";
(*TC" |
"that";
"within" |
"to";

"TP" "id" Delim
"sunmary" Delim
"title" Delim
"version" Delim

Delim

KWD_QE

"TD') "ref" Delim

"after" | "before";

[
"end" "group" [numeric [{"."
L_BRACE;

R_BRACE;

L_BRACE;

R_BRACE;

L_BRACE;

R_BRACE;

L_BRACE;

R_BRACE;

L_BRACE;

R_BRACE;

M

"y

/1 regul ar whitespace

/1 ASN. 1 style comrent

ETSI

nuneric}]];

"ignores" |

ETSI TS 102 351 V2.1.1 (2005-08)

KVD_ st at e;

41 ETSI TS 102 351 V2.1.1 (2005-08)

Annex B (informative):
TTCN-3 library modules

B.1 Electronic annex, zip file with TTCN-3 code

The TTCN-3 library modules are contained in archive ts 102351v020101p0.zip which accompanies the present
document.

ETSI

42 ETSI TS 102 351 V2.1.1 (2005-08)

Annex C (normative):
SCOP type definitions and encodings

The objective of the Simple Control & Observation Protocol (SCOP) isto offer an intermediate, abstract interface for
controlling and observing non-standardized interfaces viatest systems. It isintentionally kept very simple and readable
in its encoding to make it easy to use as well asflexible.

In its core the protocol follows a client server protocol. Here, an SCOP client is the controlling entity, i.e. atest
component with atest system, and an SCOP server is the controlled entity which resides in the SUT. SCOP defines a set
of primitives which can be exchanged between clients and servers.

SCOP can be easily extended using SCOP parameters. They allow to add additional information (in atextually encoded
format) which can be helpful when to implement more advanced SCOP client and server implementations. They could
be used, for example, to specify configuration parameters and values in the SCOP initialization primitive instead of
associating them with specific test case name in the SCOP server. Another exampleisto use them to exchange
information about the state of the SCOP server.

In the specific case of the ETSI 1Pv6 test system SCOP parameters are actually not used since it has not been designed
for aspecific IUT. Therefore these parameters do not need to be handled in a SCOP client implementation for this
particular test system.

C.1 The Protocol Type Definition

In the following we present the available SCOP primitivesin more detail. Although we have chosen TTCN-3 typesin
our presentation one can aso define similar type structures in other languages, e.g. ASN.1 or C.

modul e scopTypes {

group scopPrimtives {

/~k

** @lesc Requests the SCOP server to configure and start up the |UT
*x i npl enentation for a specific test case. The scopParans

*x field may be used to provide sone additional infornation
*x for the configuration of the IUT.

** This primtive is sent fromclient to server.

*/

type record Scopl ni t Request {
ScopString t est Casel d,
ScopPar anLi st parans optional

}
/*
** @lesc Requests the SCOP server to reset the |UT inplenmentation. |t
*x is intended to be used by a SCOP client at any time to
*x attenpt 'recovering' the IUT, e.g. if the |UT
*x is not responding anynore during a test case.
** This primtive is sent fromclient to server.
*/
type record ScopReset Request { }
/*
** @esc Requests the SCOP server to performthe action specified in
*x the cnd field on the IUT. The data field nay contain the encoded
*x data to be produced by the IUT as a result of the command.
*x Paraneters nay be used to convey infornation fromthe
*x client to the server which is not contained in the encoded data,
*x e.g. to set the state of a SCOP client.
*x This primtive is sent fromclient to server.
*/
type record ScopDat aRequest {
ScopActi on command,
ScopPar anli st parans optional,
Dat a data opti onal
}

ETSI

* %

* %

* %

* %

* %

* %

* %

* %

* %

* %

* %

43 ETSI TS 102 351 V2.1.1 (2005-08)

/*
** @lesc Indicates result of perform ng any SCOP request except
a ScopDat aRequest on the |1UT

** A code 0 and desc 'OK' nust be used for successful
return fromthe | UT operation.
x* The codes 1+ should be used for errors where the

correspondi ng description should describe the problem
that occurred.
Shoul d be returned for each Scopl nitRequest and ScopReset Request

*x This primtive is sent fromserver to client.
*/
type record ScopResponse {
i nt eger code,
ScopString desc
}
/*
** @lesc Indicates the result of perform ng a ScopDataRequest
on the I UT..
*x A code O nmust be used for successful
return fromthe | UT operation. The codes 1+ should be used
*x for errors.

In a response to a ScopDat aRequest with a 'getVialut' action

the data field may contain the encoded data, e.g. a nessage,
*x that was received by the SCOP client fromthe IUT. In all

other cases this filed should be omtted.

The paraneters may be used to convey information to the

*x client which is not part of the encoded data (e.g. about
** new state of SCOP server).
*x This primtive is sent fromserver to client.
*/
type record ScopDat aResponse {
ScopActi on comand,
i nt eger code,
ScopPar anli st parans optional,
Dat a data optional
}

} // end group scopPrimtves

group ot her ScopTypes {

/*

** @lesc Currently identified conmands. May be subject to further extension
*/

type ScopString ScopAction ("sendVialut", "getVialut");

type record of ScopParam ScopPar antLi st;
type record ScopParam { ScopString pName, ScopString pVal ue };

type charstring ScopString | ength(1l..255);
type octetstring Data | ength(1l..255);

} // end group ot her ScopTypes

} // end nodul e scopTypes

with {

encode "SCOP/1.0"

}

C.2

Encoding of SCOP

The encoding of SCOP primitives has been designed to be as simple and humanly readable as possible in order to
simplify the analysis of communication between the SCOP clients and servers. Both, type and value information, is
encoded using text strings. Each string is encoded with one octet specifying the length of the string followed by the
textually encoded value. The only exception is the encoded data string which uses afour octet length field (in network
byte order). Thisform of text string encoding has been adapted from other IETF protocols, e.g. the DNS protocol [5]
clause 3.3.

The protocol identifier "SCOP/1.0" refers to the version of the protocol and encoding rules defined in clause 11 and
annex C of the present document.

ETSI

44 ETSI TS 102 351 V2.1.1 (2005-08)

The following a gorithm describes the encoding process in more detail:
1. Create new empty encoded message.
2. Append text string 'SCOP/1.0' as protocol identifier.
3. Append length in bytes of message type name as single octet to encoded message.
4. Append message type name as text string to encoded message.
5. For eachfield in the message value:
a if field valueis present:
i. append length in bytes of message field name as single octet to encoded message.
ii. Append message field name as text string to encoded message.
iii. If field type is ScopParamList:
1. for each parameter in parameter list value:

a encodethe fields of the parameter like message fields, i.e. append 0x05 and 'pName' for
first field, then append the length of the name value as a single octet, append the name
value, etc.

2. Append asingle octet with value 0x00 to indicate the end of the list.
iv. Elseif field typeisinteger kind:
1. convertto integer value to text string, e.g. 0x01 into '1' (i.e, 0x31).
2. Append length in bytes of the text integer value as single octet to encoded message.
3. Append text integer value to encoded message.
v. Elseif field typeis octetstring kind:

1. convert to octetstring value to text string, e.g. 0X010A into '010A' (i.e, 0x3031); where letter
hexadecimals should aways we converted to upper case |etters.

2. Append length in bytes of text octetstring value as four octets (in network byte order) to
encoded message, e.g. the length of the encoded '010A" is 0x00000004.

3. Append the text octetstring value to encoded message.
vi. Otherwise:
1. append length of field text string value in bytes to encoded message as single octet.
2. Append the text string val ue to encoded message.
EXAMPLES:
TTCN-3 message (type see type definition above):

tenpl ate ScoplnitlutRequest mstartTc_001 : = {
testCaseld := 'TC 0001',
par ans = omit

}

Encoding with non-character octets shown in \xhh format:

SCOP/ 1. 0\ xOFScopl ni t Request \ x0At est Casel d\ x07TC_0001

Encoding with non-character octets shown as '?":

SCOP/ 1. 0?Scopl ni t Request ?t est Casel d?TC_0001

ETSI

45 ETSI TS 102 351 V2.1.1 (2005-08)

TTCN-3 message (type see type definition above):

tenpl at e ScopDat aRequest m sendl pv6Pkt : = {

command : = 'sendVialut',
par ans =onmt,
data = "6000000000103A40200106605503276a0000000000000004200106605503276aaeacacf f f e276a21

8000085d46a4000042369c39000648a7" O // |1Pv6 packet with | CWP echo request
}

Encoding with non-character octets shown in \xhh format:

SCOP/ 1. 0\ xOFScopDat aRequest \ xO7comrand\ x0AsendVi al ut \ xO4dat a\ xO00\ x00\ x00\ x706000000000103A4020010660
5503276a0000000000000004200106605503276aaeacacf f f e276a218000085d46a4000042369¢39000648a7

Encoding with non-character octets shown as '?":

SCOP/ 1. 0?ScopDat aRequest ?command?sendVi al ut ?dat a????6000000000103A40200106605503276a0000000000000004
200106605503276aaeacacf f f €276a218000085d46a4000042369¢39000648a7

ETSI

46 ETSI TS 102 351 V2.1.1 (2005-08)

Annex D (informative):
The IPv6 requirements database

The information discovered during and after requirements identification and catal oguing will be placed into a database.
This database will be used as the source of datafor visual presentations of the catalogue in either HTML format, ETSI
specifications format, or any other presentation format. It will also contain the various hypertext links developed during
the requirements catal oguing process.

Fields can be empty. Required data fields are indicated by an * in the discussion below.

Figure D.1 shows fields for the database with the field names separated from the data by a colon. The grouping of the
fieldsinto records appropriate to the type of DBM S s not discussed here. For example, each Rgnt Tupl eLi st may
be arecord in a separate database file using Rqnt | D asakey in arelational database management system (DBMS).

RogutID: RQ COR 1254

Fognt3ubject: HNode

ParentFncMNode: Process IPve Header

ParentFnoType: 3HALLL

ParentFncRef: RFC 2460

Function node: Process Oversized Packet

FunctionType: 3HLLL

FunctionkRef: ERFC 1951, 53 91

BEomtContext: The Implementation received a packet for forwarding. The packet's
2ize iz larger than the PHTI.

Bognt: The Implementation discards the packet and returns an ICHPve Packet Too
Big message to the packet's source address.
BogrtTuplelist: {EBEFC 1981, &3 q1: RFC 2463, 553.2::3HALL}
Conf TP ID:

Conf TC ID:

Interop TP ID:

Interop TC ID:

Link Zsrce:

Link Zroput:

Link ZConfTP:

Link ZInteropTP:

Link ZConfTC:

Link 2InteropTC:

Figure D.1: Sample Record from the Catalogue Database

Note that figure D.1 is an abstract representation of the record. Its implementation depends upon the DBMS;
e.g. Microsoft Access, text-oriented, etc.

A discussion of each field follows.

. *Rgnt | D: 1Pv6 Core requirements I dentification number, (example: RQ_COR_1254). Data type is ASCI|
string.

. Rgm Subj ect : The subject of the requirement; i.e { Node, Host, Router, etc}. Datatype is enumerated.

. * Par ent FncNode: The parent function node above the node of this specific requirement in the function
tree. Thisfield allows construction of the complete function tree if necessary. Data type is enumerated or
ASCII string.

. * Par ent FncType: The parent function node'stype; i.e. { SHALL, SHOULD, ...}. Datatype is enumerated.

If the source document does not explicitly state the type, the catalogue will implicitly define its type and
denote this by surrounding it with brackets []".

ETSI

a7 ETSI TS 102 351 V2.1.1 (2005-08)

* Par ent FncRef ;. The source document reference for the parent's function type. Datatypeis ASCII string.

*Funct i on_node: The requirement's function and node on the I Pv6 function tree. This node is a child of
the parent node in the same record. The entire function tree can be correctly built in the |eaf-to-root node
direction from the "Function_node" and "ParentFncNode" in the database. Data type is enumerated or ASCI|
string.

*Functi onType: The function node'stype; i.e. { SHALL, SHOULD, ...}. Datatypeis enumerated. If the
source document does not explicitly state the type, the catalogue will implicitly define its type and denote this
by surrounding it with brackets "[]".

*Funct i onRef : The source document reference for the parent's function type. Data type is ASCII string.

Rgm Cont ext : the general conditionsthat are necessary for the requirement to exist. Another view of the
context isthat it is the situation that leads to the specific requirement. It is not to be confused with *preambles”
used for test cases. Datatype is ASCII string.

Ragnt : the requirement for the given function. Data type is ASCII string.

Rgnt Tupl eLi st : thelist of requirement 2-tuples. A requirements 2-tuple isalist of requirements sources
and one requirement type. Requirement's sources are references to the source documents. There may be more
than one requirement's source for the same requirement. Data type of requirement's source is ASCII string.
Requirement'stypeis{SHALL, SHOULD, ...}...}. Datatypeis enumerated. If the source document does not
explicitly state the type, the catalogue will implicitly defineits type and denote this by surrounding it with
brackets"[]".

Conf _TP_I D: The ETSI conformance test purpose ID number corresponding to this requirement. Data type
is ASCII string.

Conf _TC_| D: The ETSI conformance test case ID number corresponding to this requirement. Datatype is
ASCII string.

I nt erop_TP_I D: The ETSI interoperability test purpose ID number corresponding to this requirement. Data
typeis ASCII string.

I nterop_TC I D: TheETSI interoperability test case ID number corresponding to this requirement. Data
typeis ASCII string.

Li nk_2sr ce: The hypertext link to the location in the source document of the requirement. This link can be
used in the Requirements Catalogue to go to the source of the requirement. Data type is hyperlink.

Li nk_2r gnt : The hypertext link to the location in the Requirements Catal ogue of the requirement. This link
can be used in aversion of the reference source document that allows hyperlinksin order to see the
Requirements Catalogue entry. Data type is hyperlink.

Li nk_2Conf TP: The hypertext link to the location in the ETSI conformance TP specification of the TP
associated with Conf_TP_ID. Thislink can be used in aversion of the Requirements Catal ogue to see the
conformance TP associated with this requirement. Data type is hyperlink.

Li nk_21 nt er opTP: The hypertext link to the location in the ETSI interoperability TP specification of the
TP associated with Interop_TP_ID. Thislink can be used in aversion of the Requirements Catal og to see the
interoperability TP associated with this requirement. Data type is hyperlink.

Li nk_2Conf TC: The hypertext link to the location in the ETSI conformance test case specification of the
test case associated Conf_TC_ID. Thislink can be used in aversion of the Abstract Test Suite. Datatypeis
hyperlink.

Li nk_2I nt er opTC: The hypertext link to the location in the ETSI interoperability test case specification of
the test case associated Interop_TC_ID. Datatype is hyperlink.

Note: * indicates mandatory field entries for each database record. It may seem odd that each record may not
contain arequirement. Thisis because some nodes in the tree function do not have any requirements attached
to them. In this case, the requirements are attached to the descendants.

ETSI

48 ETSI TS 102 351 V2.1.1 (2005-08)

Example display of the Requirements Catal ogue.

One possible way of displaying the Regquirements Catal ogue using information in the data base is shown in figures D.2
and D.3.

Procesz IPvo Header HNode

|: FProcess IPve Packet

= FProcess IPve Header

+ Process Owversized Packet

I+

FProcess HNext Header

|+

FProcess Destination Address

|+

Process Source Address

I+

Il
Il
Il
Frocess Hop Limit ||||
Il
Il
Il
Il

I+

[Proce=zzs Inwvalid Packet]

Figure D.2: Process IPv6 Header Node

Process Owversized Packet Node

|: Frocess IPve Packet

Il
| — Process IPv6 Header ”“
I

| — Process Oversized Packet

Requirement ID: RQ_COR_1254
Test Purpose ID:
Implementation Type: Mode

Context:
The Implementation received a packet for forwarding. The packet's size is larger than the PMTLU.

Requirement:
The Irmplementation discards the packet and returns an ICMPW Packet Too Big message to the packet's source address.

Requirement Reference::Type: RFC 1381, §3 11; RFC 2463, %2 SHALL
Catalogue User Reference::Type:

Requirement ID: RQ_COR_1056
Test Purpose ID:
Implementation Type: Router

Context:
The Implementation receives a packet larger than the MTU of the outgoing link.

Requirement:
The Implementation sends a Packet Too Big message to the source address of the too large packet.

Requirement Reference:Type: RFC 2463, §3.2, Destination Address, Description 1::MUST
Catalogue User Reference::Type: g

Figure D.3: Process Oversized Packet Node

ETSI

49 ETSI TS 102 351 V2.1.1 (2005-08)

Figure D.2 shows the "Process |Pv6 Header" node of the Requirements Catalogue. The function associated with this
nodeis "Process Oversized Packet". The parent node's function is " Process | Pv6 Packet". The node has six children
whose functions are:

. "Process Oversized Packet"";

. "Process Hop Limit";

. "Process Next Header";

. "Process Destination Address’;
. "Process Source Address'; and
. "Process Invalid Packet".

The"+" symbol indicates that the child nodes can be expanded. The "-" symbol indicates the nodes that can be

collapsed. There are no specific requirements associated with this node. The display for each node shows all the node's
ancestors (parents, grandparents, etc.) and the node's children; i.e. a branch.

Figure D.3 shows the result of expanding figure D.2's "Process Oversized Packet" node. The branch display shows that
thisis aleaf node of the tree. There are no children nodes below it. Figure D.3 also shows that there are two specific
requirements associated with the "Process Oversized Packet" function.

Other information that may be extracted from the data base could be a TP checklist. Such a checklist maps a specific
requirement to one or more Test Purposes for that requirement. The humbering and naming conventions of clauses 6.2
and 7.1.2.2.1 ensure consistency between requirements numbering and Test Purpose numbering. Figure D.4 servesasa
useful summary as well as acting as a checklist for a particular IUT to indicate what requirements are supported. The
IUT Support columniisfilled in at the time of testing (hence shown in grey).

Organization: IPv6 Label

Requirement TP IUT Support
RQ_COR_0001 TP_COR_0001_01 Yes
TP_COR_0001_02
RQ_COR_0002 TP_COR_0002_01 No
RQ_COR_0003 TP_COR_0003_01 Yes

TP_COR_0003_02
TP_COR_0003 03

Figure D.4: Example TP checklist

ETSI

50

ETSI TS 102 351 V2.1.1 (2005-08)

History

Document history
V111 September 2004 | Publication
V211 August 2005 Publication

ETSI

	Intellectual Property Rights
	Foreword
	1 Scope
	2 References
	3 Definitions and abbreviations
	3.1 Definitions
	3.2 Abbreviations

	4 The TTCN-3 Framework
	5 The IPv6 test development process
	5.1 Conformance testing methodology
	5.2 Interoperability testing methodology

	6 The Requirements Catalogue
	6.1 Entries in the Requirements Catalogue
	6.2 Naming IPv6 requirements

	7 Developing test specifications
	7.1 Conformance test specifications
	7.1.1 Test configurations
	7.1.1.1 Naming IPv6 conformance test configurations
	7.1.1.2 Naming IPv6 test components

	7.1.2 Test Suite Structure and Test Purposes
	7.1.2.1 Test Suite Structure
	7.1.2.1.1 Naming IPv6 test groups

	7.1.2.2 Test Purposes
	7.1.2.2.1 Naming IPv6 TPs
	7.1.2.2.2 Using the TP Language

	7.1.3 Test Suite development in TTCN-3
	7.1.3.1 Storage of TTCN-3 elements
	7.1.3.2 Test Cases
	7.1.3.2.1 Naming TCs

	7.1.3.3 Test case functions
	7.1.3.3.1 Naming TC functions

	7.1.3.4 TP functions
	7.1.3.4.1 Naming of TP functions

	7.1.3.5 Preambles and Postambles
	7.1.3.5.1 Naming of Preambles and Postambles

	7.1.3.6 Test case selection
	7.1.3.7 Test suite parameterization

	7.2 Interoperability test specifications
	7.2.1 Test configurations
	7.2.1.1 Naming IPv6 interoperability test configurations
	7.2.1.2 Naming IPv6 test components

	7.2.2 Test Suite Structure and Test Purposes
	7.2.2.1 Test Suite Structure
	7.2.2.1.1 Naming IPv6 test groups

	7.2.2.2 Test Purposes
	7.2.2.2.1 Naming IPv6 TPs
	7.2.2.2.2 Using the TP Language

	7.3 Test Description development
	7.3.1 Naming Test Descriptions
	7.3.2 Presentation of TDs

	8 The TTCN-3 ATS Repository and Library
	8.1 TTCN-3 Library structure overview
	8.1.1 Data types and values modules
	8.1.2 Templates modules
	8.1.3 Modules of TTCN-3 functions
	8.1.3.1 Verdict control modules
	8.1.3.2 Synchronization module
	8.1.3.3 IPv6 behaviour modules

	8.1.4 Adding modules to the TTCN-3 Library
	8.1.5 ATS Repository structure overview

	9 TTCN-3 naming conventions
	10 TTCN-3 comment tags
	11 Interaction between the test system and the SUT
	11.1 The Simple Control and Observation Protocol (SCOP)
	11.1.1 Upper Tester Server (UTS)

	11.2 The Upper Tester Client (UTC)

	Annex A (normative): A formal notation for expressing test purposes
	A.1 Introduction to TPLan
	A.2 TSS Header
	A.3 Grouping
	A.4 TP Header
	A.5 TP body
	A.5.1 The with statement
	A.5.2 The when statement
	A.5.3 The then statement
	A.5.4 Other behavioural statements

	A.6 The TPLan Grammar

	Annex B (informative): TTCN-3 library modules
	B.1 Electronic annex, zip file with TTCN-3 code

	Annex C (normative): SCOP type definitions and encodings
	C.1 The Protocol Type Definition
	C.2 Encoding of SCOP

	Annex D (informative): The IPv6 requirements database
	History

